File size: 2,793 Bytes
10aef87
 
 
 
96b0cd1
 
 
 
 
10aef87
 
 
 
 
 
 
 
 
 
96b0cd1
 
 
 
 
 
 
10aef87
 
 
ef3acbf
10aef87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b0cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10aef87
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: tmVar_5e-05_30_03
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tmVar_5e-05_30_03

This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0230
- Precision: 0.8677
- Recall: 0.8865
- F1: 0.8770
- Accuracy: 0.9964

## Model description

Trained on Token set with max_length=475

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3602        | 1.39  | 25   | 0.0547          | 0.4823    | 0.3676 | 0.4172 | 0.9851   |
| 0.0498        | 2.78  | 50   | 0.0305          | 0.4518    | 0.5568 | 0.4988 | 0.9912   |
| 0.0237        | 4.17  | 75   | 0.0198          | 0.6338    | 0.7297 | 0.6784 | 0.9942   |
| 0.0089        | 5.56  | 100  | 0.0164          | 0.7895    | 0.8919 | 0.8376 | 0.9960   |
| 0.0036        | 6.94  | 125  | 0.0138          | 0.7826    | 0.8757 | 0.8265 | 0.9967   |
| 0.0023        | 8.33  | 150  | 0.0148          | 0.8462    | 0.8919 | 0.8684 | 0.9969   |
| 0.0012        | 9.72  | 175  | 0.0159          | 0.7890    | 0.9297 | 0.8536 | 0.9966   |
| 0.0012        | 11.11 | 200  | 0.0163          | 0.845     | 0.9135 | 0.8779 | 0.9970   |
| 0.001         | 12.5  | 225  | 0.0165          | 0.8534    | 0.8811 | 0.8670 | 0.9967   |
| 0.0012        | 13.89 | 250  | 0.0215          | 0.8020    | 0.8757 | 0.8372 | 0.9961   |
| 0.0008        | 15.28 | 275  | 0.0192          | 0.875     | 0.9081 | 0.8912 | 0.9970   |
| 0.0007        | 16.67 | 300  | 0.0192          | 0.875     | 0.9081 | 0.8912 | 0.9970   |
| 0.0005        | 18.06 | 325  | 0.0192          | 0.875     | 0.9081 | 0.8912 | 0.9970   |
| 0.0009        | 19.44 | 350  | 0.0230          | 0.8677    | 0.8865 | 0.8770 | 0.9964   |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2