MultiCorp_norm_label_0.0001_0404_ES2_strict_tok
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0591
- Precision: 0.4116
- Recall: 0.5509
- F1: 0.4712
- Accuracy: 0.9724
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2418 | 0.08 | 25 | 0.1319 | 0.0 | 0.0 | 0.0 | 0.9734 |
0.1283 | 0.15 | 50 | 0.1029 | 0.0 | 0.0 | 0.0 | 0.9734 |
0.0978 | 0.23 | 75 | 0.0817 | 0.0 | 0.0 | 0.0 | 0.9734 |
0.0861 | 0.31 | 100 | 0.0793 | 0.0 | 0.0 | 0.0 | 0.9734 |
0.0887 | 0.39 | 125 | 0.0727 | 0.0 | 0.0 | 0.0 | 0.9734 |
0.0621 | 0.46 | 150 | 0.0624 | 0.3772 | 0.0322 | 0.0593 | 0.9752 |
0.0657 | 0.54 | 175 | 0.0578 | 0.7010 | 0.0509 | 0.0949 | 0.9771 |
0.0741 | 0.62 | 200 | 0.0521 | 0.4662 | 0.1804 | 0.2601 | 0.9795 |
0.0609 | 0.7 | 225 | 0.0559 | 0.5162 | 0.5487 | 0.5319 | 0.9755 |
0.056 | 0.77 | 250 | 0.0591 | 0.4116 | 0.5509 | 0.4712 | 0.9724 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.