w2v-V2
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1706
- Wer: 0.1496
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3589 | 0.1049 | 300 | 0.2921 | 0.2762 |
0.3512 | 0.2099 | 600 | 0.2855 | 0.2767 |
0.2998 | 0.3148 | 900 | 0.2872 | 0.2550 |
0.3419 | 0.4197 | 1200 | 0.2641 | 0.2620 |
0.2757 | 0.5247 | 1500 | 0.2633 | 0.2332 |
0.2827 | 0.6296 | 1800 | 0.2473 | 0.2090 |
0.265 | 0.7345 | 2100 | 0.2304 | 0.2226 |
0.2985 | 0.8395 | 2400 | 0.2266 | 0.2109 |
0.2555 | 0.9444 | 2700 | 0.2279 | 0.1891 |
0.255 | 1.0493 | 3000 | 0.2129 | 0.1927 |
0.2194 | 1.1542 | 3300 | 0.1991 | 0.1821 |
0.172 | 1.2592 | 3600 | 0.1963 | 0.1710 |
0.2018 | 1.3641 | 3900 | 0.1860 | 0.1724 |
0.2098 | 1.4690 | 4200 | 0.1783 | 0.1717 |
0.1996 | 1.5740 | 4500 | 0.1709 | 0.1563 |
0.1926 | 1.6789 | 4800 | 0.1706 | 0.1496 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for BriereAssia/w2v-V2
Base model
facebook/w2v-bert-2.0