File size: 4,694 Bytes
74f3fb9 d416e4c 74f3fb9 d416e4c 74f3fb9 d416e4c 74f3fb9 d416e4c 74f3fb9 d416e4c cf9b433 d416e4c a09b906 1eb85cd d416e4c 3d3a57f d416e4c a09b906 d416e4c 74f3fb9 48f8fdc 74f3fb9 44e5560 74f3fb9 e176936 74f3fb9 fd0f283 e176936 74f3fb9 048a29d 74f3fb9 d416e4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: mit
base_model: BramVanroy/fietje-2b
tags:
- trl
- fietje
- alignment-handbook
- sft
datasets:
- BramVanroy/ultrachat_200k_dutch
- BramVanroy/no_robots_dutch
- BramVanroy/belebele_dutch
model-index:
- name: fietje-2b-instruct
results: []
pipeline_tag: text-generation
inference: false
language:
- nl
---
<p align="center" style="margin:0;padding:0">
<img src="https://huggingface.co/BramVanroy/fietje-2b-instruct/resolve/main/img/fietje-2b-banner-rounded.png" alt="Fietje banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>
<div style="margin:auto; text-align:center">
<h1 style="margin-bottom: 0">Fietje 2B Instruct</h1>
<em>An open and efficient LLM for Dutch</em>
</div>
<blockquote class="tip" style="padding: 1.5em; border: 0">
<p align="center" style="text-align: center; margin: 0">
<a rel="nofollow" href="https://huggingface.co/BramVanroy/fietje-2b">👱♀️ Base version</a> -
<a rel="nofollow" href="https://huggingface.co/BramVanroy/fietje-2b-instruct">🤖 Instruct version</a> (this one) -
<a rel="nofollow" href="https://huggingface.co/BramVanroy/fietje-2b-chat">💬 Chat version</a> -
<a rel="nofollow" href="https://huggingface.co/BramVanroy/fietje-2b-chat-GGUF">🚀 GGUF of Instruct</a>
</p>
<p align="center" style="text-align: center; margin: 0">
<a href="https://huggingface.co/spaces/BramVanroy/fietje-2b"><strong>Chat with Fietje here!</strong></a>
</p>
</blockquote>
This is the instruct version of Fietje, an SFT-tuned (instruction-tuned) variant of [the base model](https://huggingface.co/BramVanroy/fietje-2b). Fietje is an adapated version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2), tailored to Dutch text generation by training on 28B tokens. It is small and efficient with a size of 2.7 billion parameters while performing almost on par with more powerful Dutch LLMs of twice its size like [GEITje 7B Ultra](https://huggingface.co/BramVanroy/GEITje-7B-ultra).
A thorough description of the creation and evaluation of Fietje as well as usage examples are available in [this Github repository](https://github.com/BramVanroy/fietje).
## Intended uses & limitations
The same limitations as [phi-2](https://huggingface.co/microsoft/phi-2#limitations-of-phi-2), and LLMs in general, apply here. LLMs hallucinate, make mistakes, and should not be trusted. Use at your own risk!
## Training and evaluation data
Fietje 2B instruct was finetuned from [the base model](https://huggingface.co/BramVanroy/fietje-2b) on the following datasets. Number of training samples per dataset given in brackets, totalling 201,579 samples.
- [BramVanroy/ultrachat_200k_dutch](https://huggingface.co/datasets/BramVanroy/ultrachat_200k_dutch): gpt-4-1106-preview; multi-turn; fully generated (192,598)
- [BramVanroy/no_robots_dutch](https://huggingface.co/datasets/BramVanroy/no_robots_dutch): gpt-4-1106-preview; prompt translate, answer generated; some items have system messages (8181)
- [BramVanroy/belebele_dutch](https://huggingface.co/datasets/BramVanroy/belebele_dutch): Dutch portion of [belebele](https://huggingface.co/datasets/facebook/belebele), formatted into SFT format (800)
## Training procedure
I am thankful to the [Flemish Supercomputer Center](https://www.vscentrum.be/) (VSC) for providing the computational power to accomplish this project. Accounting for waiting for jobs, training took around a day on four nodes of 4x A100 80GB each (16 total). I cannot find the exact time anymore and I do not think that the runtime in `all_results.json` accounts for interrupted-and-continued jobs.
Training was done with the wonderful [alignment-handbook](https://github.com/huggingface/alignment-handbook), using DeepSpeed as a back-end. Exact training recipes and SLURM script are given in the [Github repository](https://github.com/BramVanroy/fietje).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 42
- eval_batch_size: 42
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 672
- total_eval_batch_size: 672
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9325 | 1.0 | 178 | 0.9060 |
| 0.8687 | 2.0 | 356 | 0.8850 |
| 0.8385 | 3.0 | 534 | 0.8818 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |