File size: 7,918 Bytes
cdfd160 ba994db cdfd160 227a3af 788cbef ba994db 227a3af cdfd160 227a3af 788cbef 227a3af 788cbef 227a3af 788cbef 227a3af af258c4 788cbef af258c4 227a3af 788cbef 227a3af 788cbef 227a3af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
language:
- nl
license: cc-by-nc-4.0
datasets:
- BramVanroy/alpaca-cleaned-dutch
inference: false
base_model: ybelkada/falcon-7b-sharded-bf16
model-index:
- name: falcon-7b-ft-alpaca-cleaned-dutch
results: []
---
# falcon-7b-ft-alpaca-cleaned-dutch
## Model description
This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the [BramVanroy/alpaca-cleaned-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) dataset.
See the original [Falcon 7B model](https://huggingface.co/tiiuae/falcon-7b/) for more information, intended use, and biases.
## Intended uses & limitations
This model is intended as a (poor) baseline for Dutch generative LLMs. It by no means aims to provide SOTA performance and is specifically intended for research purposes, and an opportunity for me to test hyperparameters and stability.
Importantly, the original Falcon 7B model was only trained on English and French. Therefore, Dutch generations should be taken with a massive grain of salt.
## Training and evaluation data
Trained on the synthetic [BramVanroy/alpaca-cleaned-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) instruction dataset.
Therefore, commercial use of this model is forbidden. The model is intended for research purposes only.
## Training procedure
Trained with LoRA and merged before upload.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9832 | 0.03 | 10 | 1.8889 |
| 1.9355 | 0.05 | 20 | 1.8834 |
| 1.9694 | 0.08 | 30 | 1.8671 |
| 1.9048 | 0.1 | 40 | 1.8328 |
| 1.8443 | 0.13 | 50 | 1.7970 |
| 1.7448 | 0.16 | 60 | 1.7711 |
| 1.8004 | 0.18 | 70 | 1.7522 |
| 1.7767 | 0.21 | 80 | 1.7370 |
| 1.7733 | 0.23 | 90 | 1.7248 |
| 1.7926 | 0.26 | 100 | 1.7149 |
| 1.8258 | 0.29 | 110 | 1.7066 |
| 1.6709 | 0.31 | 120 | 1.6993 |
| 1.6612 | 0.34 | 130 | 1.6926 |
| 1.8463 | 0.36 | 140 | 1.6867 |
| 1.8413 | 0.39 | 150 | 1.6814 |
| 1.7659 | 0.42 | 160 | 1.6765 |
| 1.69 | 0.44 | 170 | 1.6715 |
| 1.7219 | 0.47 | 180 | 1.6673 |
| 1.6755 | 0.49 | 190 | 1.6627 |
| 1.7823 | 0.52 | 200 | 1.6584 |
| 1.7635 | 0.55 | 210 | 1.6545 |
| 1.7335 | 0.57 | 220 | 1.6506 |
| 1.7272 | 0.6 | 230 | 1.6471 |
| 1.718 | 0.63 | 240 | 1.6436 |
| 1.6899 | 0.65 | 250 | 1.6403 |
| 1.622 | 0.68 | 260 | 1.6370 |
| 1.6556 | 0.7 | 270 | 1.6337 |
| 1.7912 | 0.73 | 280 | 1.6304 |
| 1.6025 | 0.76 | 290 | 1.6274 |
| 1.7181 | 0.78 | 300 | 1.6246 |
| 1.7452 | 0.81 | 310 | 1.6217 |
| 1.5975 | 0.83 | 320 | 1.6189 |
| 1.5754 | 0.86 | 330 | 1.6162 |
| 1.7077 | 0.89 | 340 | 1.6136 |
| 1.5848 | 0.91 | 350 | 1.6112 |
| 1.7011 | 0.94 | 360 | 1.6087 |
| 1.6697 | 0.96 | 370 | 1.6065 |
| 1.6633 | 0.99 | 380 | 1.6042 |
| 1.6722 | 1.02 | 390 | 1.6015 |
| 1.7181 | 1.04 | 400 | 1.5993 |
| 1.6414 | 1.07 | 410 | 1.5972 |
| 1.6856 | 1.09 | 420 | 1.5952 |
| 1.6491 | 1.12 | 430 | 1.5930 |
| 1.6736 | 1.15 | 440 | 1.5912 |
| 1.619 | 1.17 | 450 | 1.5893 |
| 1.6452 | 1.2 | 460 | 1.5870 |
| 1.6498 | 1.22 | 470 | 1.5854 |
| 1.675 | 1.25 | 480 | 1.5839 |
| 1.684 | 1.28 | 490 | 1.5823 |
| 1.6379 | 1.3 | 500 | 1.5802 |
| 1.5173 | 1.33 | 510 | 1.5786 |
| 1.6443 | 1.35 | 520 | 1.5773 |
| 1.5628 | 1.38 | 530 | 1.5755 |
| 1.7287 | 1.41 | 540 | 1.5738 |
| 1.5615 | 1.43 | 550 | 1.5725 |
| 1.6129 | 1.46 | 560 | 1.5712 |
| 1.6709 | 1.48 | 570 | 1.5700 |
| 1.5818 | 1.51 | 580 | 1.5683 |
| 1.6358 | 1.54 | 590 | 1.5672 |
| 1.6513 | 1.56 | 600 | 1.5662 |
| 1.5637 | 1.59 | 610 | 1.5654 |
| 1.612 | 1.62 | 620 | 1.5643 |
| 1.6396 | 1.64 | 630 | 1.5630 |
| 1.6414 | 1.67 | 640 | 1.5620 |
| 1.6096 | 1.69 | 650 | 1.5611 |
| 1.6149 | 1.72 | 660 | 1.5603 |
| 1.5886 | 1.75 | 670 | 1.5593 |
| 1.537 | 1.77 | 680 | 1.5582 |
| 1.5883 | 1.8 | 690 | 1.5574 |
| 1.6512 | 1.82 | 700 | 1.5566 |
| 1.683 | 1.85 | 710 | 1.5559 |
| 1.7059 | 1.88 | 720 | 1.5549 |
| 1.5453 | 1.9 | 730 | 1.5542 |
| 1.5738 | 1.93 | 740 | 1.5536 |
| 1.6004 | 1.95 | 750 | 1.5530 |
| 1.6753 | 1.98 | 760 | 1.5523 |
| 1.6362 | 2.01 | 770 | 1.5517 |
| 1.5805 | 2.03 | 780 | 1.5511 |
| 1.6416 | 2.06 | 790 | 1.5508 |
| 1.5755 | 2.08 | 800 | 1.5506 |
| 1.5763 | 2.11 | 810 | 1.5501 |
| 1.7112 | 2.14 | 820 | 1.5497 |
| 1.6533 | 2.16 | 830 | 1.5493 |
| 1.6008 | 2.19 | 840 | 1.5489 |
| 1.5731 | 2.21 | 850 | 1.5485 |
| 1.4975 | 2.24 | 860 | 1.5480 |
| 1.6158 | 2.27 | 870 | 1.5478 |
| 1.6063 | 2.29 | 880 | 1.5474 |
| 1.628 | 2.32 | 890 | 1.5470 |
| 1.6177 | 2.34 | 900 | 1.5468 |
| 1.5646 | 2.37 | 910 | 1.5467 |
| 1.5272 | 2.4 | 920 | 1.5466 |
| 1.5402 | 2.42 | 930 | 1.5464 |
| 1.5815 | 2.45 | 940 | 1.5461 |
| 1.4857 | 2.47 | 950 | 1.5459 |
| 1.5923 | 2.5 | 960 | 1.5458 |
| 1.6167 | 2.53 | 970 | 1.5456 |
| 1.7214 | 2.55 | 980 | 1.5456 |
| 1.5467 | 2.58 | 990 | 1.5455 |
| 1.6455 | 2.61 | 1000 | 1.5453 |
| 1.6137 | 2.63 | 1010 | 1.5453 |
| 1.6104 | 2.66 | 1020 | 1.5453 |
| 1.6756 | 2.68 | 1030 | 1.5451 |
| 1.5818 | 2.71 | 1040 | 1.5450 |
| 1.5829 | 2.74 | 1050 | 1.5450 |
| 1.5753 | 2.76 | 1060 | 1.5450 |
| 1.6484 | 2.79 | 1070 | 1.5450 |
| 1.6765 | 2.81 | 1080 | 1.5450 |
| 1.623 | 2.84 | 1090 | 1.5449 |
| 1.6901 | 2.87 | 1100 | 1.5449 |
| 1.6601 | 2.89 | 1110 | 1.5449 |
| 1.6763 | 2.92 | 1120 | 1.5449 |
| 1.6203 | 2.94 | 1130 | 1.5449 |
| 1.5113 | 2.97 | 1140 | 1.5448 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|