File size: 7,918 Bytes
cdfd160
ba994db
 
cdfd160
227a3af
 
788cbef
ba994db
227a3af
 
 
cdfd160
227a3af
788cbef
227a3af
 
 
788cbef
227a3af
 
 
788cbef
 
 
227a3af
 
 
af258c4
788cbef
af258c4
227a3af
 
 
788cbef
 
227a3af
 
 
788cbef
 
227a3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
language:
- nl
license: cc-by-nc-4.0
datasets:
- BramVanroy/alpaca-cleaned-dutch
inference: false
base_model: ybelkada/falcon-7b-sharded-bf16
model-index:
- name: falcon-7b-ft-alpaca-cleaned-dutch
  results: []
---



# falcon-7b-ft-alpaca-cleaned-dutch



## Model description

This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the [BramVanroy/alpaca-cleaned-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) dataset.
See the original [Falcon 7B model](https://huggingface.co/tiiuae/falcon-7b/) for more information, intended use, and biases.


## Intended uses & limitations

This model is intended as a (poor) baseline for Dutch generative LLMs. It by no means aims to provide SOTA performance and is specifically intended for research purposes, and an opportunity for me to test hyperparameters and stability.

Importantly, the original Falcon 7B model was only trained on English and French. Therefore, Dutch generations should be taken with a massive grain of salt.

## Training and evaluation data

Trained on the synthetic [BramVanroy/alpaca-cleaned-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) instruction dataset. 
Therefore, commercial use of this model is forbidden. The model is intended for research purposes only.

## Training procedure

Trained with LoRA and merged before upload.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9832        | 0.03  | 10   | 1.8889          |
| 1.9355        | 0.05  | 20   | 1.8834          |
| 1.9694        | 0.08  | 30   | 1.8671          |
| 1.9048        | 0.1   | 40   | 1.8328          |
| 1.8443        | 0.13  | 50   | 1.7970          |
| 1.7448        | 0.16  | 60   | 1.7711          |
| 1.8004        | 0.18  | 70   | 1.7522          |
| 1.7767        | 0.21  | 80   | 1.7370          |
| 1.7733        | 0.23  | 90   | 1.7248          |
| 1.7926        | 0.26  | 100  | 1.7149          |
| 1.8258        | 0.29  | 110  | 1.7066          |
| 1.6709        | 0.31  | 120  | 1.6993          |
| 1.6612        | 0.34  | 130  | 1.6926          |
| 1.8463        | 0.36  | 140  | 1.6867          |
| 1.8413        | 0.39  | 150  | 1.6814          |
| 1.7659        | 0.42  | 160  | 1.6765          |
| 1.69          | 0.44  | 170  | 1.6715          |
| 1.7219        | 0.47  | 180  | 1.6673          |
| 1.6755        | 0.49  | 190  | 1.6627          |
| 1.7823        | 0.52  | 200  | 1.6584          |
| 1.7635        | 0.55  | 210  | 1.6545          |
| 1.7335        | 0.57  | 220  | 1.6506          |
| 1.7272        | 0.6   | 230  | 1.6471          |
| 1.718         | 0.63  | 240  | 1.6436          |
| 1.6899        | 0.65  | 250  | 1.6403          |
| 1.622         | 0.68  | 260  | 1.6370          |
| 1.6556        | 0.7   | 270  | 1.6337          |
| 1.7912        | 0.73  | 280  | 1.6304          |
| 1.6025        | 0.76  | 290  | 1.6274          |
| 1.7181        | 0.78  | 300  | 1.6246          |
| 1.7452        | 0.81  | 310  | 1.6217          |
| 1.5975        | 0.83  | 320  | 1.6189          |
| 1.5754        | 0.86  | 330  | 1.6162          |
| 1.7077        | 0.89  | 340  | 1.6136          |
| 1.5848        | 0.91  | 350  | 1.6112          |
| 1.7011        | 0.94  | 360  | 1.6087          |
| 1.6697        | 0.96  | 370  | 1.6065          |
| 1.6633        | 0.99  | 380  | 1.6042          |
| 1.6722        | 1.02  | 390  | 1.6015          |
| 1.7181        | 1.04  | 400  | 1.5993          |
| 1.6414        | 1.07  | 410  | 1.5972          |
| 1.6856        | 1.09  | 420  | 1.5952          |
| 1.6491        | 1.12  | 430  | 1.5930          |
| 1.6736        | 1.15  | 440  | 1.5912          |
| 1.619         | 1.17  | 450  | 1.5893          |
| 1.6452        | 1.2   | 460  | 1.5870          |
| 1.6498        | 1.22  | 470  | 1.5854          |
| 1.675         | 1.25  | 480  | 1.5839          |
| 1.684         | 1.28  | 490  | 1.5823          |
| 1.6379        | 1.3   | 500  | 1.5802          |
| 1.5173        | 1.33  | 510  | 1.5786          |
| 1.6443        | 1.35  | 520  | 1.5773          |
| 1.5628        | 1.38  | 530  | 1.5755          |
| 1.7287        | 1.41  | 540  | 1.5738          |
| 1.5615        | 1.43  | 550  | 1.5725          |
| 1.6129        | 1.46  | 560  | 1.5712          |
| 1.6709        | 1.48  | 570  | 1.5700          |
| 1.5818        | 1.51  | 580  | 1.5683          |
| 1.6358        | 1.54  | 590  | 1.5672          |
| 1.6513        | 1.56  | 600  | 1.5662          |
| 1.5637        | 1.59  | 610  | 1.5654          |
| 1.612         | 1.62  | 620  | 1.5643          |
| 1.6396        | 1.64  | 630  | 1.5630          |
| 1.6414        | 1.67  | 640  | 1.5620          |
| 1.6096        | 1.69  | 650  | 1.5611          |
| 1.6149        | 1.72  | 660  | 1.5603          |
| 1.5886        | 1.75  | 670  | 1.5593          |
| 1.537         | 1.77  | 680  | 1.5582          |
| 1.5883        | 1.8   | 690  | 1.5574          |
| 1.6512        | 1.82  | 700  | 1.5566          |
| 1.683         | 1.85  | 710  | 1.5559          |
| 1.7059        | 1.88  | 720  | 1.5549          |
| 1.5453        | 1.9   | 730  | 1.5542          |
| 1.5738        | 1.93  | 740  | 1.5536          |
| 1.6004        | 1.95  | 750  | 1.5530          |
| 1.6753        | 1.98  | 760  | 1.5523          |
| 1.6362        | 2.01  | 770  | 1.5517          |
| 1.5805        | 2.03  | 780  | 1.5511          |
| 1.6416        | 2.06  | 790  | 1.5508          |
| 1.5755        | 2.08  | 800  | 1.5506          |
| 1.5763        | 2.11  | 810  | 1.5501          |
| 1.7112        | 2.14  | 820  | 1.5497          |
| 1.6533        | 2.16  | 830  | 1.5493          |
| 1.6008        | 2.19  | 840  | 1.5489          |
| 1.5731        | 2.21  | 850  | 1.5485          |
| 1.4975        | 2.24  | 860  | 1.5480          |
| 1.6158        | 2.27  | 870  | 1.5478          |
| 1.6063        | 2.29  | 880  | 1.5474          |
| 1.628         | 2.32  | 890  | 1.5470          |
| 1.6177        | 2.34  | 900  | 1.5468          |
| 1.5646        | 2.37  | 910  | 1.5467          |
| 1.5272        | 2.4   | 920  | 1.5466          |
| 1.5402        | 2.42  | 930  | 1.5464          |
| 1.5815        | 2.45  | 940  | 1.5461          |
| 1.4857        | 2.47  | 950  | 1.5459          |
| 1.5923        | 2.5   | 960  | 1.5458          |
| 1.6167        | 2.53  | 970  | 1.5456          |
| 1.7214        | 2.55  | 980  | 1.5456          |
| 1.5467        | 2.58  | 990  | 1.5455          |
| 1.6455        | 2.61  | 1000 | 1.5453          |
| 1.6137        | 2.63  | 1010 | 1.5453          |
| 1.6104        | 2.66  | 1020 | 1.5453          |
| 1.6756        | 2.68  | 1030 | 1.5451          |
| 1.5818        | 2.71  | 1040 | 1.5450          |
| 1.5829        | 2.74  | 1050 | 1.5450          |
| 1.5753        | 2.76  | 1060 | 1.5450          |
| 1.6484        | 2.79  | 1070 | 1.5450          |
| 1.6765        | 2.81  | 1080 | 1.5450          |
| 1.623         | 2.84  | 1090 | 1.5449          |
| 1.6901        | 2.87  | 1100 | 1.5449          |
| 1.6601        | 2.89  | 1110 | 1.5449          |
| 1.6763        | 2.92  | 1120 | 1.5449          |
| 1.6203        | 2.94  | 1130 | 1.5449          |
| 1.5113        | 2.97  | 1140 | 1.5448          |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3