File size: 8,858 Bytes
8f9a231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers.modeling_outputs import CausalLMOutput

class BVVAbsConfig(PretrainedConfig):
    model_type = "bvv_abs"
    
    def __init__(

        self,

        vocab_size = 131072,

        n_embd = 4096,

        n_head = 32,  

        n_layer = 4, 

        block_size = 1024,

        pad_id = 57344,

        **kwargs

    ):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.block_size  = block_size 
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.pad_id = pad_id 

class RotaryEmbedding(nn.Module):
    def __init__(self, dim):  # dim = head_dim (?? n_embd!)
        super().__init__()
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seq_len, device):
        t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype)
        freqs = torch.einsum('i,j->ij', t, self.inv_freq)
        emb = torch.cat([freqs, freqs], dim=-1)    # (seq_len, dim)
        return emb

def apply_rotary_emb(x, rot_emb):
    # x: (B, n_head, seq_len, head_dim)
    # rot_emb: (seq_len, head_dim)
    seq_len = x.shape[-2]
    rot_emb = rot_emb[:seq_len]
    
    cos = torch.cos(rot_emb).unsqueeze(0).unsqueeze(0)  # (1, 1, seq_len, head_dim)
    sin = torch.sin(rot_emb).unsqueeze(0).unsqueeze(0)
    
    x_shape = x.shape
    x = x.reshape(*x_shape[:-1], -1, 2)  # (..., head_dim/2, 2)
    x1 = x[..., 0]  
    x2 = x[..., 1] 
    
    cos = cos.reshape(*cos.shape[:-1], -1, 2)[..., 0]
    sin = sin.reshape(*sin.shape[:-1], -1, 2)[..., 0]
    
    x1_rot = x1 * cos - x2 * sin
    x2_rot = x1 * sin + x2 * cos
    
    x_rot = torch.stack([x1_rot, x2_rot], dim=-1)
    return x_rot.reshape(x_shape)

class MultiHeadSelfAttention(nn.Module):
    def __init__(self, n_embd, n_head, block_size):
        super().__init__()
        assert n_embd % n_head == 0
        self.n_embd = n_embd
        self.n_head = n_head
        self.head_dim = n_embd // n_head

        self.q_proj = nn.Linear(n_embd, n_embd, bias=False)
        self.k_proj = nn.Linear(n_embd, n_embd, bias=False)
        self.v_proj = nn.Linear(n_embd, n_embd, bias=False)
        self.o_proj = nn.Linear(n_embd, n_embd, bias=False)

        self.rotary_emb = RotaryEmbedding(self.head_dim)
        self.dropout = nn.Dropout(0.0)

        self.register_buffer(
            "tril", torch.tril(torch.ones(block_size, block_size)), persistent=False
        )

    def forward(self, x):
        # x: (B, T, n_embd)
        B, T, C = x.shape

        q = self.q_proj(x)    # (B, T, n_embd)
        k = self.k_proj(x)
        v = self.v_proj(x)

        q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2)  # (B, n_head, T, head_dim)
        k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
        v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2)

        # Rotary embeddings
        rot_emb = self.rotary_emb(seq_len=T, device=x.device)   # (T, head_dim)
        q = apply_rotary_emb(q, rot_emb)
        k = apply_rotary_emb(k, rot_emb)

        # Attention
        attn_scores = torch.matmul(q, k.transpose(-2, -1)) * (self.head_dim ** -0.5)  # (B, n_head, T, T)
        attn_scores = attn_scores.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
        attn_probs = F.softmax(attn_scores, dim=-1)
        attn_probs = self.dropout(attn_probs)

        out = torch.matmul(attn_probs, v)  # (B, n_head, T, head_dim)
        out = out.transpose(1, 2).contiguous().view(B, T, C)  # (B, T, n_embd)

        return self.o_proj(out)


class TransformerMLP(nn.Module):
    def __init__(self, n_embd):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),
            nn.GELU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(0.0),
        )

    def forward(self, x):
        return self.net(x)

class TransformerBlock(nn.Module):
    def __init__(self, n_embd, n_head, block_size):
        super().__init__()
        self.self_attn = MultiHeadSelfAttention(n_embd, n_head, block_size)
        self.mlp = TransformerMLP(n_embd)
        self.input_layernorm = nn.LayerNorm(n_embd)
        self.post_attention_layernorm = nn.LayerNorm(n_embd)

    def forward(self, x):
        x = x + self.self_attn(self.input_layernorm(x))
        x = x + self.mlp(self.post_attention_layernorm(x))
        return x

class BVVAbsForCausalLM(PreTrainedModel):
    config_class = BVVAbsConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.token_embeddings = nn.Embedding(config.vocab_size, config.n_embd)
        
        self.transformer_layers = nn.Sequential(*[
            TransformerBlock(config.n_embd, n_head=config.n_head, block_size=config.block_size) for _ in range(config.n_layer)
        ])
        self.final_layernorm = nn.LayerNorm(config.n_embd)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)

        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)


    def forward(self, idx, targets=None):
        B, T = idx.shape

        x = self.token_embeddings(idx)
        
        x = self.transformer_layers(x)
        x = self.final_layernorm(x)
        logits = self.lm_head(x)

        loss = None
        if targets is not None:
            #logits_flat = logits.view(-1, logits.size(-1))
            #targets_flat = targets.view(-1)
            logits_flat = logits.reshape(-1, logits.size(-1))
            targets_flat = targets.reshape(-1)
            loss = F.cross_entropy(logits_flat, targets_flat, ignore_index = 57344)

        return CausalLMOutput(
            logits=logits,
            loss=loss,
        )

    def generate(self, 

                input_ids=None,

                max_new_tokens=None,

                max_length=None,

                temperature=1.0,

                top_k=None,

                top_p=None,

                do_sample=True,

                pad_token_id=None,

                eos_token_id=None,

                **kwargs):
        
        if input_ids is None:
            raise ValueError("Input_ids must be provided")
        
        idx = input_ids
        
        if max_new_tokens is None:
            if max_length is not None:
                max_new_tokens = max_length - idx.shape[1]
            else:
                max_new_tokens = 50  
        
        with torch.no_grad():
            for _ in range(max_new_tokens):
                idx_cond = idx[:, -self.config.block_size:]
                
                outputs = self(idx_cond)
                logits = outputs.logits[:, -1, :] / temperature
                
                if top_k is not None:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = float('-inf')
                
                if top_p is not None:
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
                    
                    sorted_indices_to_remove = cumulative_probs > top_p
                    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                    sorted_indices_to_remove[..., 0] = 0
                    
                    indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
                    logits[indices_to_remove] = float('-inf')
                
                probs = F.softmax(logits, dim=-1)
                
                if do_sample:
                    idx_next = torch.multinomial(probs, num_samples=1)
                else:
                    idx_next = torch.argmax(logits, dim=-1, keepdim=True)
                
                idx = torch.cat((idx, idx_next), dim=1)
                
    
                if eos_token_id is not None and (idx_next == eos_token_id).any():
                    break
        
        return idx