Update README.md
Browse files
README.md
CHANGED
@@ -22,6 +22,7 @@ tags:
|
|
22 |
---
|
23 |
|
24 |
|
|
|
25 |
<p align="center">
|
26 |
<img src="https://huggingface.co/BioMistral/BioMistral-7B/resolve/main/wordart_blue_m_rectangle.png?download=true" alt="drawing" width="250"/>
|
27 |
</p>
|
@@ -33,6 +34,8 @@ tags:
|
|
33 |
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, offering potential applications across specialized domains such as healthcare and medicine. Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges.
|
34 |
In this paper, we introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central. We conduct a comprehensive evaluation of BioMistral on a benchmark comprising 10 established medical question-answering (QA) tasks in English. We also explore lightweight models obtained through quantization and model merging approaches. Our results demonstrate BioMistral's superior performance compared to existing open-source medical models and its competitive edge against proprietary counterparts. Finally, to address the limited availability of data beyond English and to assess the multilingual generalization of medical LLMs, we automatically translated and evaluated this benchmark into 7 other languages. This marks the first large-scale multilingual evaluation of LLMs in the medical domain. Datasets, multilingual evaluation benchmarks, scripts, and all the models obtained during our experiments are freely released.
|
35 |
|
|
|
|
|
36 |
# 1. BioMistral models
|
37 |
|
38 |
**BioMistral** is a suite of Mistral-based further pre-trained open source models suited for the medical domains and pre-trained using textual data from PubMed Central Open Access (CC0, CC BY, CC BY-SA, and CC BY-ND). All the models are trained using the CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/jean-zay/) French HPC.
|
@@ -106,6 +109,9 @@ Arxiv : [https://arxiv.org/abs/2402.10373](https://arxiv.org/abs/2402.10373)
|
|
106 |
}
|
107 |
```
|
108 |
|
|
|
|
|
|
|
109 |
# BnB 4/8 bits Requirements:
|
110 |
|
111 |
```plain
|
|
|
22 |
---
|
23 |
|
24 |
|
25 |
+
|
26 |
<p align="center">
|
27 |
<img src="https://huggingface.co/BioMistral/BioMistral-7B/resolve/main/wordart_blue_m_rectangle.png?download=true" alt="drawing" width="250"/>
|
28 |
</p>
|
|
|
34 |
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, offering potential applications across specialized domains such as healthcare and medicine. Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges.
|
35 |
In this paper, we introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central. We conduct a comprehensive evaluation of BioMistral on a benchmark comprising 10 established medical question-answering (QA) tasks in English. We also explore lightweight models obtained through quantization and model merging approaches. Our results demonstrate BioMistral's superior performance compared to existing open-source medical models and its competitive edge against proprietary counterparts. Finally, to address the limited availability of data beyond English and to assess the multilingual generalization of medical LLMs, we automatically translated and evaluated this benchmark into 7 other languages. This marks the first large-scale multilingual evaluation of LLMs in the medical domain. Datasets, multilingual evaluation benchmarks, scripts, and all the models obtained during our experiments are freely released.
|
36 |
|
37 |
+
**Advisory Notice!** Although BioMistral is intended to encapsulate medical knowledge sourced from high-quality evidence, it hasn't been tailored to effectively, safely, or suitably convey this knowledge within professional parameters for action. We advise refraining from utilizing BioMistral in medical contexts unless it undergoes thorough alignment with specific use cases and undergoes further testing, notably including randomized controlled trials in real-world medical environments.
|
38 |
+
|
39 |
# 1. BioMistral models
|
40 |
|
41 |
**BioMistral** is a suite of Mistral-based further pre-trained open source models suited for the medical domains and pre-trained using textual data from PubMed Central Open Access (CC0, CC BY, CC BY-SA, and CC BY-ND). All the models are trained using the CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/jean-zay/) French HPC.
|
|
|
109 |
}
|
110 |
```
|
111 |
|
112 |
+
**CAUTION!** Both direct and downstream users need to be informed about the risks, biases, and constraints inherent in the model. While the model can produce natural language text, our exploration of its capabilities and limitations is just beginning. In fields such as medicine, comprehending these limitations is crucial. Hence, we strongly advise against deploying this model for natural language generation in production or for professional tasks in the realm of health and medicine.
|
113 |
+
|
114 |
+
|
115 |
# BnB 4/8 bits Requirements:
|
116 |
|
117 |
```plain
|