Torchaudio_Tacotron2_kss
torchaudio Tacotron2 model, trained on kss dataset.
License
- code: MIT License
pytorch_model.bin
weights: CC BY-NC-SA 4.0 (license of the kss dataset)
Requirements
pip install torch torchaudio transformers phonemizer
and you have to install espeak-ng
If you are using Windows, you need to set additional environment variables. see: https://github.com/bootphon/phonemizer/issues/44
Usage
import torch
from transformers import AutoModel, AutoTokenizer
repo = "Bingsu/torchaudio_tacotron2_kss"
model = AutoModel.from_pretrained(
repo,
trust_remote_code=True,
revision="589d6557e8b4bb347f49de74270541063ba9c2bc"
)
tokenizer = AutoTokenizer.from_pretrained(repo)
model.eval()
vocoder = torch.hub.load("seungwonpark/melgan:aca59909f6dd028ec808f987b154535a7ca3400c", "melgan", trust_repo=True, pretrained=False)
url = "https://huggingface.co/Bingsu/torchaudio_tacotron2_kss/resolve/main/melgan.pt"
state_dict = torch.hub.load_state_dict_from_url(url)
vocoder.load_state_dict(state_dict)
vocoder is same as original seungwonpark/melgan, but the weights are on the cuda, so I brought them separately.
text = "๋ฐ๊ฐ์ต๋๋ค ํ์ฝํธ๋ก 2์
๋๋ค."
inp = tokenizer(text, return_tensors="pt", return_length=True, return_attention_mask=False)
with torch.inference_mode():
out = model(**inp)
audio = vocoder(out[0])
import IPython.display as ipd
ipd.Audio(audio[0].numpy(), rate=22050)
- Downloads last month
- 35
Inference API (serverless) does not yet support model repos that contain custom code.