File size: 2,181 Bytes
da4a086 7208a4c da4a086 7208a4c 1b7b96e da4a086 fed0e01 03661c5 8b727aa fed0e01 50d7e3d fed0e01 9a54951 fed0e01 6a4c996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
tags:
- autotrain
- text-generation
- mistral
- fine-tune
- text-generation-inference
- chat
- Trained with Auto-train
- pytorch
widget:
- text: 'I love AutoTrain because '
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: conversational
---
# Model Trained Using AutoTrain
![LLM_IMAGE](header.jpeg)
The mistral-7b-fraud2-finetuned Large Language Model (LLM) is a fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of synthetically generated Fraudulent transcripts datasets.
For full details of this model please read [release blog post](https://mistral.ai/news/announcing-mistral-7b/)
## Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[\INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
E.g.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
text = "<s>[INST] Below is a conversation transcript [/INST]"
"Your credit card has been stolen, and you need to contact us to resolve the issue. We will help you protect your information and prevent further fraud.</s> "
"[INST] Analyze the conversation and determine if it's fraudulent or legitimate. [/INST]"
encodeds = tokenizer(text, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## Model Architecture
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
## Version
- v1
## The Team
- BILIC TEAM OF AI ENGINEERS |