Edit model card

Whisper Small Sanskrit lr scheduler - Bidit Sadhukhan

This model is a fine-tuned version of openai/whisper-small on the load_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1133
  • Wer: 29.2638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.55e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 11000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1184 0.12 500 0.1969 46.2909
0.0912 0.23 1000 0.1741 43.2205
0.0808 0.35 1500 0.1676 40.2062
0.0645 0.47 2000 0.1656 39.5282
0.0659 0.58 2500 0.1477 35.9704
0.0826 0.7 3000 0.1515 36.6876
0.0559 0.82 3500 0.1389 36.0769
0.0482 0.93 4000 0.1243 32.7880
0.034 1.05 4500 0.1352 34.4408
0.0275 1.17 5000 0.1301 32.0876
0.0284 1.28 5500 0.1249 30.5188
0.0268 1.4 6000 0.1343 31.7010
0.021 1.52 6500 0.1190 29.6784
0.0245 1.63 7000 0.1133 28.9444
0.0219 1.75 7500 0.1118 27.7734
0.0235 1.87 8000 0.1051 31.2808
0.0217 1.98 8500 0.1125 31.4713
0.0064 2.1 9000 0.1109 27.9751
0.0078 2.21 9500 0.1156 27.6053
0.0099 2.33 10000 0.1136 28.7483
0.01 2.45 10500 0.1133 29.2806
0.009 2.56 11000 0.1133 29.2638

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Bidwill/whisper-small-sanskrit-lr-scheduler-2

Finetuned
(1853)
this model

Evaluation results