File size: 972 Bytes
d08e0d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import streamlit as st
from PIL import Image
from transformers import pipeline
# Load your fine-tuned zero-shot model
classifier = pipeline("zero-shot-classification", model="Balajim57/zero-shot-vitb32")
def predict(image, prompt1, prompt2, prompt3):
# Perform zero-shot classification on the uploaded image with provided prompts
results = classifier(image, [prompt1, prompt2, prompt3])
return results["labels"]
# Streamlit UI components
st.title("Zero-Shot Image Classification")
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
prompt1 = st.text_input("Prompt 1")
prompt2 = st.text_input("Prompt 2")
prompt3 = st.text_input("Prompt 3")
if uploaded_image:
image = Image.open(uploaded_image)
st.image(image, caption="Uploaded Image", use_column_width=True)
if st.button("Classify"):
results = predict(image, prompt1, prompt2, prompt3)
st.write("Classification Results:")
st.write(results) |