Edit model card

Cosine_matric_llama2_prompt1

This model is a fine-tuned version of NousResearch/Llama-2-7b-chat-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9479

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • _load_in_8bit: False
  • _load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16
  • load_in_4bit: True
  • load_in_8bit: False

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.0276 0.4 384 0.9479
1.0277 0.8 768 0.9479
1.0213 1.2 1152 0.9479
1.0277 1.6 1536 0.9479
0.8449 2.0 1920 0.9479

Framework versions

  • PEFT 0.4.0
  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Bakugo123/Cosine_matric_llama2_prompt1

Adapter
(342)
this model