File size: 17,253 Bytes
827d192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# --------------------------------------------------------
# Adapted from  https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------

import os
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint

try:
    from timm.models.layers import drop_path, to_2tuple
except:
    from timm.layers import drop_path, to_2tuple

try:
    import xformers.ops as xops
except ImportError:
    xops = None
    print("Please 'pip install xformers'")


class PatchDropout(nn.Module):
    """
    https://arxiv.org/abs/2212.00794
    """

    def __init__(self, prob, exclude_first_token=True):
        super().__init__()
        assert 0 <= prob < 1.
        self.prob = prob
        self.exclude_first_token = exclude_first_token  # exclude CLS token
        print(f"os.getenv('RoPE')={os.getenv('RoPE')}")

    def forward(self, x):
        if not self.training or self.prob == 0.:
            return x

        if self.exclude_first_token:
            cls_tokens, x = x[:, :1], x[:, 1:]
        else:
            cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])

        batch = x.size()[0]
        num_tokens = x.size()[1]

        batch_indices = torch.arange(batch)
        batch_indices = batch_indices[..., None]

        keep_prob = 1 - self.prob
        num_patches_keep = max(1, int(num_tokens * keep_prob))

        rand = torch.randn(batch, num_tokens)
        patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices

        x = x[batch_indices, patch_indices_keep]

        if self.exclude_first_token:
            x = torch.cat((cls_tokens, x), dim=1)

        if self.training and os.getenv('RoPE') == '1':
            return x, patch_indices_keep

        return x

class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
    
    def extra_repr(self) -> str:
        return 'p={}'.format(self.drop_prob)


class Mlp(nn.Module):
    def __init__(
        self, 
        in_features, 
        hidden_features=None, 
        out_features=None, 
        act_layer=nn.GELU, 
        norm_layer=nn.LayerNorm, 
        drop=0.,
        subln=False,

        ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()

        self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()

        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement 
        x = self.ffn_ln(x)

        x = self.fc2(x)
        x = self.drop(x)
        return x

class SwiGLU(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., 
                norm_layer=nn.LayerNorm, subln=False):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.w1 = nn.Linear(in_features, hidden_features)
        self.w2 = nn.Linear(in_features, hidden_features)

        self.act = act_layer()
        self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
        self.w3 = nn.Linear(hidden_features, out_features)
        
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x1 = self.w1(x)
        x2 = self.w2(x)
        hidden = self.act(x1) * x2
        x = self.ffn_ln(hidden)
        x = self.w3(x)
        x = self.drop(x)
        return x

class Attention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.subln = subln
        if self.subln:
            self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
            self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
            self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
        else:
            if qkv_bias:
                self.qkv = nn.Linear(dim, all_head_dim * 3, bias=True)
            else:
                self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)

        # if qkv_bias:
        #     self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
        #     self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        #     qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        #     self.qkv.bias.data = qkv_bias
        # else:
        #     self.q_bias = None
        #     self.v_bias = None

        self.window_size = None
        self.relative_position_bias_table = None
        self.relative_position_index = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
        # self.proj = nn.Linear(all_head_dim, all_head_dim)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.xattn = xattn
        self.xattn_drop = attn_drop

        self.rope = rope

    def forward(self, x, rel_pos_bias=None, attn_mask=None):
        B, N, C = x.shape
        if self.subln: 
            q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
            k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
            v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)

            q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)     # B, num_heads, N, C
            k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)  
            v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) 
        else: 

            # qkv_bias = None
            # if self.q_bias is not None:
            #     qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
            
            # qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)

            qkv = self.qkv(x)

            qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)   # 3, B, num_heads, N, C
            q, k, v = qkv[0], qkv[1], qkv[2]

        if self.rope:
            q_t = q[:, :, 1:, :]
            ro_q_t = self.rope(q_t)
            q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)

            k_t = k[:, :, 1:, :]
            ro_k_t = self.rope(k_t)
            k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)

        if self.xattn:
            q = q.permute(0, 2, 1, 3)   # B, num_heads, N, C -> B, N, num_heads, C
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)

            x = xops.memory_efficient_attention(
                q, k, v,
                p=self.xattn_drop,
                scale=self.scale,
                )
            x = x.reshape(B, N, -1)
            x = self.inner_attn_ln(x)
            x = self.proj(x)
            x = self.proj_drop(x)
        else:
            q = q * self.scale
            attn = (q @ k.transpose(-2, -1))

            if self.relative_position_bias_table is not None:
                relative_position_bias = \
                    self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                        self.window_size[0] * self.window_size[1] + 1,
                        self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
                relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
                attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)

            if rel_pos_bias is not None:
                attn = attn + rel_pos_bias.type_as(attn)

            if attn_mask is not None:
                attn_mask = attn_mask.bool()
                attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
            
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)

            x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
            x = self.inner_attn_ln(x)
            x = self.proj(x)
            x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
                 subln=False, naiveswiglu=False):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
            xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)

        if naiveswiglu:
            self.mlp = SwiGLU(
                in_features=dim, 
                hidden_features=mlp_hidden_dim, 
                subln=subln,
                norm_layer=norm_layer,
            )
        else:
            self.mlp = Mlp(
                in_features=dim, 
                hidden_features=mlp_hidden_dim, 
                act_layer=act_layer,
                subln=subln,
                drop=drop
            )

        if init_values is not None and init_values > 0:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

        self.postnorm = postnorm

    def forward(self, x, rel_pos_bias=None, attn_mask=None):
        if self.gamma_1 is None:
            if self.postnorm:
                x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
                x = x + self.drop_path(self.norm2(self.mlp(x)))
            else:
                x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
                x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            if self.postnorm:
                x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
                x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
            else:
                x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
                x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x, **kwargs):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class EVAVisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
                 use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
                 use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
                 pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False,
                 ):
        super().__init__()
        self.image_size = img_size
        # self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        if use_abs_pos_emb:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        else:
            self.pos_embed = None
        self.pos_drop = nn.Dropout(p=drop_rate)

        self.rel_pos_bias = None
        self.rope = None

        self.naiveswiglu = naiveswiglu

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.use_rel_pos_bias = use_rel_pos_bias
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
                xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
            for i in range(depth)])

        # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
        self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()

        self.grad_checkpointing = grad_checkpointing


    def get_num_layers(self):
        return len(self.blocks)
    
    def lock(self, unlocked_groups=0, freeze_bn_stats=False):
        assert unlocked_groups == 0, 'partial locking not currently supported for this model'
        for param in self.parameters():
            param.requires_grad = False

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}


    def forward_features(self, x):
        x = self.patch_embed(x)
        batch_size, seq_len, _ = x.size()

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)

        # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
        if os.getenv('RoPE') == '1':
            if self.training and not isinstance(self.patch_dropout, nn.Identity):
                x, patch_indices_keep = self.patch_dropout(x)
                self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
            else:
                self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
                x = self.patch_dropout(x)
        else:
            x = self.patch_dropout(x)

        rel_pos_bias = None

        for blk in self.blocks:
            if self.grad_checkpointing:
                x = checkpoint(blk, x, (rel_pos_bias,))
            else:
                x = blk(x, rel_pos_bias=rel_pos_bias)

        return x

    def forward(self, x):

        """
        :return:
            forward_features function returns raw features of ViT,
            forward with return_all_features returns normalized features of ViT
        :param x:
        :param return_all_features:
        """

        features = self.forward_features(x)  # [B, n_patch, C]

        return features