File size: 1,786 Bytes
573ad7f 8feab60 573ad7f a17fcaa 573ad7f 5fd4dea 573ad7f f891e7c 573ad7f 5fd4dea 573ad7f 5fd4dea 573ad7f 32a2897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: other
---
![Aquila_logo](./log.jpeg)
<h4 align="center">
<p>
<b>English</b> |
<a href="https://huggingface.co/BAAI/AquilaChat2-70B-Expr/blob/main/README_zh.md">简体中文</a>
</p>
</h4>
We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B**, **Aquila2-34B** and **Aquila2-70B-Expr** , as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B**, **AquilaChat2-34B** and **AquilaChat2-70B-Expr**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**
The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
## Quick Start
### 1. Inference
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
model_info = "BAAI/Aquila2-70B-Expr"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True)
model.eval()
text = "请给出10个要到北京旅游的理由。"
tokens = tokenizer.encode_plus(text)['input_ids']
tokens = torch.tensor(tokens)[None,].to(device)
stop_tokens = ["###", "[UNK]", "</s>"]
with torch.no_grad():
out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0]
out = tokenizer.decode(out.cpu().numpy().tolist())
print(out)
```
## License
Aquila2 70B series open-source model is licensed under [ BAAI Aquila 70B Model Licence Agreement](https://huggingface.co/BAAI/Aquila2-70B-Expr/blob/main/BAAI-Aquila-70B-Model-License-Agreement.pdf) |