Nina Zukowska commited on
Commit
b0ae575
·
1 Parent(s): 544c9a2

moment base files added

Browse files
Files changed (4) hide show
  1. README.md +156 -0
  2. config.json +38 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - AutonLab/Timeseries-PILE
5
+ metrics:
6
+ - accuracy
7
+ - mse
8
+ - mae
9
+ - f1
10
+ tags:
11
+ - time series
12
+ - forecasting
13
+ - classification
14
+ - anomaly detection
15
+ - imputation
16
+ - transformers
17
+ - pretrained models
18
+ - foundation models
19
+ - time-series
20
+ pipeline_tag: time-series-forecasting
21
+ ---
22
+ # MOMENT-base
23
+
24
+ MOMENT is a family of foundation models for general-purpose time-series analysis. The models in this family (1) serve as a building block for diverse **time-series analysis tasks** (e.g., forecasting, classification, anomaly detection, and imputation, etc.), (2) are effective **out-of-the-box**, i.e., with no (or few) task-specific exemplars (enabling e.g., zero-shot forecasting, few-shot classification, etc.), and (3) are **tunable** using in-distribution and task-specific data to improve performance.
25
+
26
+ For details on MOMENT models, training data, and experimental results, please refer to the paper [MOMENT: A Family of Open Time-series Foundation Models](https://arxiv.org/pdf/2402.03885.pdf).
27
+
28
+ # Usage
29
+
30
+ **Recommended Python Version:** Python 3.11 (support for additional versions is expected soon).
31
+
32
+ You can install the `momentfm` package using pip:
33
+ ```bash
34
+ pip install momentfm
35
+ ```
36
+ Alternatively, to install the latest version directly from the GitHub repository:
37
+ ```bash
38
+ pip install git+https://github.com/moment-timeseries-foundation-model/moment.git
39
+ ```
40
+
41
+
42
+ To load the pre-trained model for one of the tasks, use one of the following code snippets:
43
+
44
+ **Forecasting**
45
+ ```python
46
+ from moment import MOMENTPipeline
47
+
48
+ model = MOMENTPipeline.from_pretrained(
49
+ "AutonLab/MOMENT-1-base",
50
+ model_kwargs={
51
+ 'task_name': 'forecasting',
52
+ 'forecast_horizon': 96
53
+ },
54
+ )
55
+ model.init()
56
+ ```
57
+
58
+ **Classification**
59
+ ```python
60
+ from moment import MOMENTPipeline
61
+
62
+ model = MOMENTPipeline.from_pretrained(
63
+ "AutonLab/MOMENT-1-base",
64
+ model_kwargs={
65
+ 'task_name': 'classification',
66
+ 'n_channels': 1,
67
+ 'num_class': 2
68
+ },
69
+ )
70
+ model.init()
71
+ ```
72
+
73
+ **Anomaly Detection, Imputation, and Pre-training**
74
+ ```python
75
+ from moment import MOMENTPipeline
76
+
77
+ model = MOMENTPipeline.from_pretrained(
78
+ "AutonLab/MOMENT-1-base",
79
+ model_kwargs={"task_name": "reconstruction"},
80
+ )
81
+ mode.init()
82
+ ```
83
+
84
+ **Representation Learning**
85
+ ```python
86
+ from moment import MOMENTPipeline
87
+
88
+ model = MOMENTPipeline.from_pretrained(
89
+ "AutonLab/MOMENT-1-base",
90
+ model_kwargs={'task_name': 'embedding'},
91
+ )
92
+ ```
93
+
94
+ ### Tutorials
95
+ Here is the list of tutorials and reproducibile experiments to get started with MOMENT for various tasks:
96
+ - [Forecasting](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/forecasting.ipynb)
97
+ - [Classification](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/classification.ipynb)
98
+ - [Anomaly Detection](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/anomaly_detection.ipynb)
99
+ - [Imputation](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/imputation.ipynb)
100
+ - [Representation Learning](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/representation_learning.ipynb)
101
+ - [Real-world Electrocardiogram (ECG) Case Study](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/ptbxl_classification.ipynb) -- This tutorial also shows how to fine-tune MOMENT for a real-world ECG classification problem, performing training and inference on multiple GPUs and parameter efficient fine-tuning (PEFT).
102
+
103
+ ## Model Details
104
+
105
+ ### Model Description
106
+
107
+ - **Developed by:** [Auton Lab](https://autonlab.org/), [Carnegie Mellon University](https://www.cmu.edu/) and [University of Pennsylvania](https://www.upenn.edu/)
108
+ - **Model type:** Time-series Foundation Model
109
+ - **License:** MIT License
110
+
111
+ ### Model Sources
112
+
113
+ <!-- Provide the basic links for the model. -->
114
+
115
+ - **Repository:** https://github.com/moment-timeseries-foundation-model/ (Pre-training and research code coming out soon!)
116
+ - **Paper:** https://arxiv.org/abs/2402.03885
117
+ - **Demo:** https://github.com/moment-timeseries-foundation-model/moment/tree/main/tutorials
118
+
119
+
120
+ ## Environmental Impact
121
+
122
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
123
+
124
+ We train multiple models over many days resulting in significant energy usage and a sizeable carbon footprint. However, we hope that releasing our models will ensure that future time-series modeling efforts are quicker and more efficient, resulting in lower carbon emissions.
125
+
126
+ We use the Total Graphics Power (TGP) to calculate the total power consumed for training MOMENT models, although the total power consumed by the GPU will likely vary a little based on the GPU utilization while training our model. Our calculations do not account for power demands from other sources of our compute. We use 336.566 Kg C02/MWH as the standard value of CO2 emission per megawatt hour of energy consumed for [Pittsburgh](https://emissionsindex.org/).
127
+
128
+ - **Hardware Type:** NVIDIA RTX A6000 GPU
129
+ - **GPU Hours:** 89
130
+ - **Compute Region:** Pittsburgh, USA
131
+ - **Carbon Emission (tCO2eq):**
132
+
133
+ #### Hardware
134
+
135
+ All models were trained and evaluated on a computing cluster consisting of 128 AMD EPYC 7502 CPUs, 503 GB of RAM, and 8 NVIDIA RTX A6000 GPUs each with 49 GiB RAM. All MOMENT variants were trained on a single A6000 GPU (with any data or model parallelism).
136
+
137
+ ## Citation
138
+
139
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
140
+
141
+ **BibTeX:**
142
+ If you use MOMENT please cite our paper:
143
+
144
+ ```bibtex
145
+ @inproceedings{goswami2024moment,
146
+ title={MOMENT: A Family of Open Time-series Foundation Models},
147
+ author={Mononito Goswami and Konrad Szafer and Arjun Choudhry and Yifu Cai and Shuo Li and Artur Dubrawski},
148
+ booktitle={International Conference on Machine Learning},
149
+ year={2024}
150
+ }
151
+ ```
152
+
153
+ **APA:**
154
+
155
+ Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. (2024).
156
+ MOMENT: A Family of Open Time-series Foundation Models. In International Conference on Machine Learning. PMLR.
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"task_name": "reconstruction",
2
+ "model_name": "MOMENT",
3
+ "transformer_type": "encoder_only",
4
+ "d_model": null,
5
+ "seq_len": 512,
6
+ "patch_len": 8,
7
+ "patch_stride_len": 8,
8
+ "device": "cpu",
9
+ "transformer_backbone": "google/flan-t5-base",
10
+ "model_kwargs": {},
11
+ "t5_config": {
12
+ "architectures": [
13
+ "T5ForConditionalGeneration"
14
+ ],
15
+ "d_ff": 2048,
16
+ "d_kv": 64,
17
+ "d_model": 768,
18
+ "decoder_start_token_id": 0,
19
+ "dropout_rate": 0.1,
20
+ "eos_token_id": 1,
21
+ "feed_forward_proj": "gated-gelu",
22
+ "initializer_factor": 1.0,
23
+ "is_encoder_decoder": true,
24
+ "layer_norm_epsilon": 1e-06,
25
+ "model_type": "t5",
26
+ "n_positions": 512,
27
+ "num_decoder_layers": 12,
28
+ "num_heads": 12,
29
+ "num_layers": 12,
30
+ "output_past": true,
31
+ "pad_token_id": 0,
32
+ "relative_attention_max_distance": 128,
33
+ "relative_attention_num_buckets": 32,
34
+ "tie_word_embeddings": false,
35
+ "use_cache": true,
36
+ "vocab_size": 32128
37
+ }
38
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a436826ffe618273ec62b9656dc4cab8edc470364f104e90542a4ebc14fb825
3
+ size 453940120
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23c3d65bbb6dcd323352029e9fbe4ee3a3da0fff55b45ee4e00f38fff4e9bfb9
3
+ size 453978525