Augusto777's picture
End of training
cc27530 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-ve-b-U10-24
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8431372549019608

vit-base-patch16-224-ve-b-U10-24

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6432
  • Accuracy: 0.8431

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 24

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.96 6 1.3827 0.3137
1.378 1.92 12 1.3335 0.5490
1.378 2.88 18 1.2577 0.5882
1.2725 4.0 25 1.1886 0.4706
1.1073 4.96 31 1.1040 0.6275
1.1073 5.92 37 1.0658 0.6078
0.9657 6.88 43 1.0155 0.6667
0.8361 8.0 50 0.9330 0.7451
0.8361 8.96 56 0.9690 0.6667
0.7181 9.92 62 0.8910 0.7255
0.7181 10.88 68 0.8953 0.6863
0.6126 12.0 75 0.8343 0.7451
0.5096 12.96 81 0.8048 0.7059
0.5096 13.92 87 0.7977 0.7059
0.4348 14.88 93 0.7250 0.7451
0.4011 16.0 100 0.6432 0.8431
0.4011 16.96 106 0.7317 0.7255
0.3292 17.92 112 0.7015 0.7451
0.3292 18.88 118 0.6248 0.7647
0.309 20.0 125 0.6990 0.7451
0.2744 20.96 131 0.6591 0.7843
0.2744 21.92 137 0.6452 0.7647
0.2864 22.88 143 0.6290 0.7843
0.2864 23.04 144 0.6285 0.7843

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0