metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-ve-b-U10-24
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8431372549019608
vit-base-patch16-224-ve-b-U10-24
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6432
- Accuracy: 0.8431
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 24
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.96 | 6 | 1.3827 | 0.3137 |
1.378 | 1.92 | 12 | 1.3335 | 0.5490 |
1.378 | 2.88 | 18 | 1.2577 | 0.5882 |
1.2725 | 4.0 | 25 | 1.1886 | 0.4706 |
1.1073 | 4.96 | 31 | 1.1040 | 0.6275 |
1.1073 | 5.92 | 37 | 1.0658 | 0.6078 |
0.9657 | 6.88 | 43 | 1.0155 | 0.6667 |
0.8361 | 8.0 | 50 | 0.9330 | 0.7451 |
0.8361 | 8.96 | 56 | 0.9690 | 0.6667 |
0.7181 | 9.92 | 62 | 0.8910 | 0.7255 |
0.7181 | 10.88 | 68 | 0.8953 | 0.6863 |
0.6126 | 12.0 | 75 | 0.8343 | 0.7451 |
0.5096 | 12.96 | 81 | 0.8048 | 0.7059 |
0.5096 | 13.92 | 87 | 0.7977 | 0.7059 |
0.4348 | 14.88 | 93 | 0.7250 | 0.7451 |
0.4011 | 16.0 | 100 | 0.6432 | 0.8431 |
0.4011 | 16.96 | 106 | 0.7317 | 0.7255 |
0.3292 | 17.92 | 112 | 0.7015 | 0.7451 |
0.3292 | 18.88 | 118 | 0.6248 | 0.7647 |
0.309 | 20.0 | 125 | 0.6990 | 0.7451 |
0.2744 | 20.96 | 131 | 0.6591 | 0.7843 |
0.2744 | 21.92 | 137 | 0.6452 | 0.7647 |
0.2864 | 22.88 | 143 | 0.6290 | 0.7843 |
0.2864 | 23.04 | 144 | 0.6285 | 0.7843 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0