--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-ve-b-U10-24 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8431372549019608 --- # vit-base-patch16-224-ve-b-U10-24 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6432 - Accuracy: 0.8431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 24 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 6 | 1.3827 | 0.3137 | | 1.378 | 1.92 | 12 | 1.3335 | 0.5490 | | 1.378 | 2.88 | 18 | 1.2577 | 0.5882 | | 1.2725 | 4.0 | 25 | 1.1886 | 0.4706 | | 1.1073 | 4.96 | 31 | 1.1040 | 0.6275 | | 1.1073 | 5.92 | 37 | 1.0658 | 0.6078 | | 0.9657 | 6.88 | 43 | 1.0155 | 0.6667 | | 0.8361 | 8.0 | 50 | 0.9330 | 0.7451 | | 0.8361 | 8.96 | 56 | 0.9690 | 0.6667 | | 0.7181 | 9.92 | 62 | 0.8910 | 0.7255 | | 0.7181 | 10.88 | 68 | 0.8953 | 0.6863 | | 0.6126 | 12.0 | 75 | 0.8343 | 0.7451 | | 0.5096 | 12.96 | 81 | 0.8048 | 0.7059 | | 0.5096 | 13.92 | 87 | 0.7977 | 0.7059 | | 0.4348 | 14.88 | 93 | 0.7250 | 0.7451 | | 0.4011 | 16.0 | 100 | 0.6432 | 0.8431 | | 0.4011 | 16.96 | 106 | 0.7317 | 0.7255 | | 0.3292 | 17.92 | 112 | 0.7015 | 0.7451 | | 0.3292 | 18.88 | 118 | 0.6248 | 0.7647 | | 0.309 | 20.0 | 125 | 0.6990 | 0.7451 | | 0.2744 | 20.96 | 131 | 0.6591 | 0.7843 | | 0.2744 | 21.92 | 137 | 0.6452 | 0.7647 | | 0.2864 | 22.88 | 143 | 0.6290 | 0.7843 | | 0.2864 | 23.04 | 144 | 0.6285 | 0.7843 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0