File size: 4,357 Bytes
3d5547f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b726223
3d5547f
 
 
 
 
 
 
 
 
b726223
 
3d5547f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---

license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-U8-40
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8666666666666667
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch16-224-U8-40

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5495
- Accuracy: 0.8667

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.5e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05

- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3457        | 1.0   | 20   | 1.3128          | 0.45     |
| 1.1498        | 2.0   | 40   | 1.1047          | 0.5667   |
| 0.8312        | 3.0   | 60   | 0.8231          | 0.65     |
| 0.5334        | 4.0   | 80   | 0.5719          | 0.8167   |
| 0.3582        | 5.0   | 100  | 0.5495          | 0.8667   |
| 0.2389        | 6.0   | 120  | 0.5801          | 0.8333   |
| 0.2055        | 7.0   | 140  | 0.6727          | 0.8167   |
| 0.1738        | 8.0   | 160  | 0.7238          | 0.8      |
| 0.1556        | 9.0   | 180  | 0.7665          | 0.75     |
| 0.1461        | 10.0  | 200  | 0.8229          | 0.7667   |
| 0.1401        | 11.0  | 220  | 0.8102          | 0.75     |
| 0.08          | 12.0  | 240  | 0.6609          | 0.8333   |
| 0.0989        | 13.0  | 260  | 0.6703          | 0.8333   |
| 0.0773        | 14.0  | 280  | 0.7303          | 0.8167   |
| 0.089         | 15.0  | 300  | 0.7757          | 0.7833   |
| 0.11          | 16.0  | 320  | 0.7279          | 0.8      |
| 0.086         | 17.0  | 340  | 0.8491          | 0.7833   |
| 0.0671        | 18.0  | 360  | 0.7950          | 0.8      |
| 0.0775        | 19.0  | 380  | 0.6753          | 0.85     |
| 0.0636        | 20.0  | 400  | 0.7881          | 0.8333   |
| 0.0737        | 21.0  | 420  | 0.7450          | 0.8333   |
| 0.0583        | 22.0  | 440  | 0.8295          | 0.8      |
| 0.0646        | 23.0  | 460  | 0.8227          | 0.8333   |
| 0.0637        | 24.0  | 480  | 0.9030          | 0.7833   |
| 0.0647        | 25.0  | 500  | 0.8656          | 0.8      |
| 0.0477        | 26.0  | 520  | 0.8362          | 0.8      |
| 0.0481        | 27.0  | 540  | 0.8389          | 0.8      |
| 0.0355        | 28.0  | 560  | 0.9424          | 0.8      |
| 0.0352        | 29.0  | 580  | 0.8963          | 0.8      |
| 0.0335        | 30.0  | 600  | 0.8560          | 0.8333   |
| 0.0372        | 31.0  | 620  | 0.7250          | 0.8333   |
| 0.0389        | 32.0  | 640  | 0.7846          | 0.8167   |
| 0.0425        | 33.0  | 660  | 0.8532          | 0.8333   |
| 0.0404        | 34.0  | 680  | 0.8169          | 0.8333   |
| 0.0359        | 35.0  | 700  | 0.8682          | 0.8167   |
| 0.0231        | 36.0  | 720  | 0.9362          | 0.8167   |
| 0.027         | 37.0  | 740  | 0.9139          | 0.8167   |
| 0.0214        | 38.0  | 760  | 0.8782          | 0.8167   |
| 0.0191        | 39.0  | 780  | 0.8794          | 0.8167   |
| 0.0293        | 40.0  | 800  | 0.8929          | 0.8167   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0