File size: 4,415 Bytes
5a665e2 7757d98 5a665e2 7757d98 5a665e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-DMAE-da-colab
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7391304347826086
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-tiny-patch4-window8-256-DMAE-da-colab
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9394
- Accuracy: 0.7391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.3823 | 0.9565 | 11 | 1.4058 | 0.1957 |
| 1.3366 | 2.0 | 23 | 1.4482 | 0.1957 |
| 1.2352 | 2.9565 | 34 | 1.2309 | 0.4565 |
| 1.1374 | 4.0 | 46 | 1.1031 | 0.6087 |
| 1.0344 | 4.9565 | 57 | 1.0230 | 0.5870 |
| 0.8772 | 6.0 | 69 | 0.9115 | 0.6522 |
| 0.7321 | 6.9565 | 80 | 0.8858 | 0.6522 |
| 0.6319 | 8.0 | 92 | 0.8665 | 0.6522 |
| 0.6438 | 8.9565 | 103 | 0.7738 | 0.7174 |
| 0.4714 | 10.0 | 115 | 0.8492 | 0.6304 |
| 0.433 | 10.9565 | 126 | 0.8386 | 0.6957 |
| 0.4793 | 12.0 | 138 | 0.9394 | 0.7391 |
| 0.4769 | 12.9565 | 149 | 0.9471 | 0.6522 |
| 0.3872 | 14.0 | 161 | 1.1526 | 0.6087 |
| 0.3906 | 14.9565 | 172 | 1.0575 | 0.6522 |
| 0.3798 | 16.0 | 184 | 1.0593 | 0.6957 |
| 0.3377 | 16.9565 | 195 | 1.0783 | 0.6087 |
| 0.3919 | 18.0 | 207 | 1.1067 | 0.6522 |
| 0.3631 | 18.9565 | 218 | 1.1018 | 0.6739 |
| 0.2762 | 20.0 | 230 | 1.1479 | 0.6522 |
| 0.2935 | 20.9565 | 241 | 1.1055 | 0.6957 |
| 0.3029 | 22.0 | 253 | 1.1203 | 0.6739 |
| 0.2857 | 22.9565 | 264 | 1.2820 | 0.6304 |
| 0.2603 | 24.0 | 276 | 1.2550 | 0.6304 |
| 0.2162 | 24.9565 | 287 | 1.1655 | 0.6739 |
| 0.2465 | 26.0 | 299 | 1.2511 | 0.6739 |
| 0.2238 | 26.9565 | 310 | 1.3461 | 0.6304 |
| 0.2271 | 28.0 | 322 | 1.3472 | 0.6304 |
| 0.2694 | 28.9565 | 333 | 1.4501 | 0.6304 |
| 0.1903 | 30.0 | 345 | 1.4629 | 0.6304 |
| 0.2054 | 30.9565 | 356 | 1.4672 | 0.6304 |
| 0.199 | 32.0 | 368 | 1.4725 | 0.6304 |
| 0.2034 | 32.9565 | 379 | 1.4507 | 0.6522 |
| 0.2048 | 34.0 | 391 | 1.4330 | 0.6304 |
| 0.1767 | 34.9565 | 402 | 1.4638 | 0.6304 |
| 0.1799 | 36.0 | 414 | 1.4232 | 0.6304 |
| 0.1903 | 36.9565 | 425 | 1.4508 | 0.6304 |
| 0.1864 | 38.0 | 437 | 1.4460 | 0.6304 |
| 0.1818 | 38.2609 | 440 | 1.4456 | 0.6304 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|