File size: 7,355 Bytes
3e61686 24dbfc4 3e61686 e9d4173 3e61686 e9d4173 3e61686 e9d4173 3e61686 9ae252c 3e61686 e9d4173 3e61686 e9d4173 3e61686 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'Room Buzz: Alstom, DRL,:Dealing Room Buzz: Alstom, DRL, Raymond, Titan'
- text: 'like Cummins, Voltas and Engineers India:Capital goods names like Cummins,
Voltas and Engineers India to fetch returns: Manish Sonthalia'
- text: DCM Shriram Consolidated rallies 17%:DCM Shriram Consolidated rallies 17%,
hits 52-week high on plans to reward shareholders
- text: 'Deepak Mohoni, trendwatchindia.com:Tinplate is certainly a hold: Deepak Mohoni,
trendwatchindia.com'
- text: Dollar flatlines ahead of:Dollar flatlines ahead of Janet Yellen, Mario Draghi
at Jackson Hole
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false
base_model: sentence-transformers/all-mpnet-base-v2
---
# SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
1. Use a spaCy model to select possible aspect span candidates.
2. Use a SetFit model to filter these possible aspect span candidates.
3. Use this SetFit model to classify the filtered aspect span candidates.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_sm
- **SetFitABSA Aspect Model:** [/Askinkaty/setfit-finance-aspect](https://huggingface.co/Askinkaty/setfit-finance-aspect)
- **SetFitABSA Polarity Model:** [/Askinkaty/setfit-finance-polarity](https://huggingface.co/Askinkaty/setfit-finance-polarity)
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Labels
| Label | Examples |
|:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neutral | <ul><li>'Ponzi schemes: Sebi seeks quarterly meetings:Ponzi schemes: Sebi seeks quarterly meetings of state panels'</li><li>'European shares steady, pegged:European shares steady, pegged back by Vodafone'</li><li>'Bajaj Auto Q2 net at:Bajaj Auto Q2 net at Rs 591 crore'</li></ul> |
| negative | <ul><li>'pegged back by Vodafone:European shares steady, pegged back by Vodafone'</li><li>'M&M Finance plunges 8.5%:M&M Finance plunges 8.5% as brokers cut target price post Q3 results'</li><li>"' rating on Tata Motors; prefer Hero:Have 'sell' rating on Tata Motors; prefer Hero MotoCorp among auto stocks: Harendra Kumar"</li></ul> |
| positive | <ul><li>"Buy' on Wipro with target of:Maintain 'Buy' on Wipro with target of Rs 528: Sharekhan"</li><li>"Motors; prefer Hero MotoCorp among auto stocks:Have 'sell' rating on Tata Motors; prefer Hero MotoCorp among auto stocks: Harendra Kumar"</li><li>'Servalakshmi Paper debuts at over:Servalakshmi Paper debuts at over 3 pc premium on BSE'</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"Askinkaty/setfit-finance-aspect",
"Askinkaty/setfit-finance-polarity",
)
# Run inference
preds = model("Banking stocks to see lot of traction: Mitesh Thacker.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
### Training Hyperparameters
- batch_size: 64
- num_epochs: 2
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: 1e-05
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Framework Versions
- Python: 3.11.11
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- spaCy: 3.7.5
- Transformers: 4.42.1
- PyTorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |