Upload 13 files
Browse files- 1_Pooling/config.json +10 -0
- README.md +213 -3
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +10 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,213 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- absa
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
widget:
|
9 |
+
- text: 'Room Buzz: Alstom, DRL,:Dealing Room Buzz: Alstom, DRL, Raymond, Titan'
|
10 |
+
- text: 'like Cummins, Voltas and Engineers India:Capital goods names like Cummins,
|
11 |
+
Voltas and Engineers India to fetch returns: Manish Sonthalia'
|
12 |
+
- text: DCM Shriram Consolidated rallies 17%:DCM Shriram Consolidated rallies 17%,
|
13 |
+
hits 52-week high on plans to reward shareholders
|
14 |
+
- text: 'Deepak Mohoni, trendwatchindia.com:Tinplate is certainly a hold: Deepak Mohoni,
|
15 |
+
trendwatchindia.com'
|
16 |
+
- text: Dollar flatlines ahead of:Dollar flatlines ahead of Janet Yellen, Mario Draghi
|
17 |
+
at Jackson Hole
|
18 |
+
metrics:
|
19 |
+
- accuracy
|
20 |
+
pipeline_tag: text-classification
|
21 |
+
library_name: setfit
|
22 |
+
inference: false
|
23 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
24 |
+
---
|
25 |
+
|
26 |
+
# SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
|
27 |
+
|
28 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
|
29 |
+
|
30 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
31 |
+
|
32 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
33 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
34 |
+
|
35 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
36 |
+
|
37 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
38 |
+
2. Use a SetFit model to filter these possible aspect span candidates.
|
39 |
+
3. **Use this SetFit model to classify the filtered aspect span candidates.**
|
40 |
+
|
41 |
+
## Model Details
|
42 |
+
|
43 |
+
### Model Description
|
44 |
+
- **Model Type:** SetFit
|
45 |
+
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
|
46 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
47 |
+
- **spaCy Model:** en_core_web_sm
|
48 |
+
- **SetFitABSA Aspect Model:** [/scratch/project_2006600/fin_experiment/models/setfit-finance-aspect](https://huggingface.co//scratch/project_2006600/fin_experiment/models/setfit-finance-aspect)
|
49 |
+
- **SetFitABSA Polarity Model:** [/scratch/project_2006600/fin_experiment/models/setfit-finance-polarity](https://huggingface.co//scratch/project_2006600/fin_experiment/models/setfit-finance-polarity)
|
50 |
+
- **Maximum Sequence Length:** 384 tokens
|
51 |
+
- **Number of Classes:** 3 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| neutral | <ul><li>'Ponzi schemes: Sebi seeks quarterly meetings:Ponzi schemes: Sebi seeks quarterly meetings of state panels'</li><li>'European shares steady, pegged:European shares steady, pegged back by Vodafone'</li><li>'Bajaj Auto Q2 net at:Bajaj Auto Q2 net at Rs 591 crore'</li></ul> |
|
66 |
+
| negative | <ul><li>'pegged back by Vodafone:European shares steady, pegged back by Vodafone'</li><li>'M&M Finance plunges 8.5%:M&M Finance plunges 8.5% as brokers cut target price post Q3 results'</li><li>"' rating on Tata Motors; prefer Hero:Have 'sell' rating on Tata Motors; prefer Hero MotoCorp among auto stocks: Harendra Kumar"</li></ul> |
|
67 |
+
| positive | <ul><li>"Buy' on Wipro with target of:Maintain 'Buy' on Wipro with target of Rs 528: Sharekhan"</li><li>"Motors; prefer Hero MotoCorp among auto stocks:Have 'sell' rating on Tata Motors; prefer Hero MotoCorp among auto stocks: Harendra Kumar"</li><li>'Servalakshmi Paper debuts at over:Servalakshmi Paper debuts at over 3 pc premium on BSE'</li></ul> |
|
68 |
+
|
69 |
+
## Uses
|
70 |
+
|
71 |
+
### Direct Use for Inference
|
72 |
+
|
73 |
+
First install the SetFit library:
|
74 |
+
|
75 |
+
```bash
|
76 |
+
pip install setfit
|
77 |
+
```
|
78 |
+
|
79 |
+
Then you can load this model and run inference.
|
80 |
+
|
81 |
+
```python
|
82 |
+
from setfit import AbsaModel
|
83 |
+
|
84 |
+
# Download from the 🤗 Hub
|
85 |
+
model = AbsaModel.from_pretrained(
|
86 |
+
"/scratch/project_2006600/fin_experiment/models/setfit-finance-aspect",
|
87 |
+
"/scratch/project_2006600/fin_experiment/models/setfit-finance-polarity",
|
88 |
+
)
|
89 |
+
# Run inference
|
90 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
91 |
+
```
|
92 |
+
|
93 |
+
<!--
|
94 |
+
### Downstream Use
|
95 |
+
|
96 |
+
*List how someone could finetune this model on their own dataset.*
|
97 |
+
-->
|
98 |
+
|
99 |
+
<!--
|
100 |
+
### Out-of-Scope Use
|
101 |
+
|
102 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
103 |
+
-->
|
104 |
+
|
105 |
+
<!--
|
106 |
+
## Bias, Risks and Limitations
|
107 |
+
|
108 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
109 |
+
-->
|
110 |
+
|
111 |
+
<!--
|
112 |
+
### Recommendations
|
113 |
+
|
114 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
115 |
+
-->
|
116 |
+
|
117 |
+
## Training Details
|
118 |
+
|
119 |
+
### Training Set Metrics
|
120 |
+
| Training set | Min | Median | Max |
|
121 |
+
|:-------------|:----|:--------|:----|
|
122 |
+
| Word count | 6 | 14.2133 | 29 |
|
123 |
+
|
124 |
+
| Label | Training Sample Count |
|
125 |
+
|:---------|:----------------------|
|
126 |
+
| negative | 536 |
|
127 |
+
| neutral | 749 |
|
128 |
+
| positive | 703 |
|
129 |
+
|
130 |
+
### Training Hyperparameters
|
131 |
+
- batch_size: (64, 64)
|
132 |
+
- num_epochs: (2, 2)
|
133 |
+
- max_steps: -1
|
134 |
+
- sampling_strategy: oversampling
|
135 |
+
- body_learning_rate: (2e-05, 1e-05)
|
136 |
+
- head_learning_rate: 0.01
|
137 |
+
- loss: CosineSimilarityLoss
|
138 |
+
- distance_metric: cosine_distance
|
139 |
+
- margin: 0.25
|
140 |
+
- end_to_end: False
|
141 |
+
- use_amp: True
|
142 |
+
- warmup_proportion: 0.1
|
143 |
+
- l2_weight: 0.01
|
144 |
+
- seed: 42
|
145 |
+
- eval_max_steps: -1
|
146 |
+
- load_best_model_at_end: True
|
147 |
+
|
148 |
+
### Training Results
|
149 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
150 |
+
|:------:|:----:|:-------------:|:---------------:|
|
151 |
+
| 0.0000 | 1 | 0.2969 | - |
|
152 |
+
| 0.0025 | 50 | 0.3201 | - |
|
153 |
+
| 0.0049 | 100 | 0.2933 | 0.2839 |
|
154 |
+
| 0.0074 | 150 | 0.262 | - |
|
155 |
+
| 0.0098 | 200 | 0.2523 | 0.2480 |
|
156 |
+
| 0.0123 | 250 | 0.2403 | - |
|
157 |
+
| 0.0147 | 300 | 0.2185 | 0.2199 |
|
158 |
+
| 0.0172 | 350 | 0.1983 | - |
|
159 |
+
| 0.0196 | 400 | 0.1874 | 0.2003 |
|
160 |
+
| 0.0221 | 450 | 0.1727 | - |
|
161 |
+
| 0.0245 | 500 | 0.1568 | 0.1882 |
|
162 |
+
| 0.0270 | 550 | 0.1386 | - |
|
163 |
+
| 0.0294 | 600 | 0.1181 | 0.1742 |
|
164 |
+
| 0.0319 | 650 | 0.1023 | - |
|
165 |
+
| 0.0343 | 700 | 0.0877 | 0.1766 |
|
166 |
+
| 0.0368 | 750 | 0.0717 | - |
|
167 |
+
| 0.0392 | 800 | 0.0555 | 0.1854 |
|
168 |
+
| 0.0417 | 850 | 0.0447 | - |
|
169 |
+
| 0.0441 | 900 | 0.0343 | 0.1841 |
|
170 |
+
|
171 |
+
### Framework Versions
|
172 |
+
- Python: 3.11.11
|
173 |
+
- SetFit: 1.1.0
|
174 |
+
- Sentence Transformers: 3.3.1
|
175 |
+
- spaCy: 3.7.5
|
176 |
+
- Transformers: 4.42.1
|
177 |
+
- PyTorch: 2.5.1+cu124
|
178 |
+
- Datasets: 3.2.0
|
179 |
+
- Tokenizers: 0.19.1
|
180 |
+
|
181 |
+
## Citation
|
182 |
+
|
183 |
+
### BibTeX
|
184 |
+
```bibtex
|
185 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
186 |
+
doi = {10.48550/ARXIV.2209.11055},
|
187 |
+
url = {https://arxiv.org/abs/2209.11055},
|
188 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
189 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
190 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
191 |
+
publisher = {arXiv},
|
192 |
+
year = {2022},
|
193 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
194 |
+
}
|
195 |
+
```
|
196 |
+
|
197 |
+
<!--
|
198 |
+
## Glossary
|
199 |
+
|
200 |
+
*Clearly define terms in order to be accessible across audiences.*
|
201 |
+
-->
|
202 |
+
|
203 |
+
<!--
|
204 |
+
## Model Card Authors
|
205 |
+
|
206 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
207 |
+
-->
|
208 |
+
|
209 |
+
<!--
|
210 |
+
## Model Card Contact
|
211 |
+
|
212 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
213 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.42.1",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.42.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"span_context": 3,
|
3 |
+
"spacy_model": "en_core_web_sm",
|
4 |
+
"normalize_embeddings": false,
|
5 |
+
"labels": [
|
6 |
+
"negative",
|
7 |
+
"neutral",
|
8 |
+
"positive"
|
9 |
+
]
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:104e4bf6fe2fc6277b2c19b3ba231f152aea5578a157f5496f6a56e108829955
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82a79584241ba6917aba72ba12af73a373d4af2bea60ea13c100c93e37d6dd91
|
3 |
+
size 19375
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 384,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|