Askinkaty commited on
Commit
3e61686
1 Parent(s): 9965cd2

Upload 13 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,213 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - absa
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ widget:
9
+ - text: 'Room Buzz: Alstom, DRL,:Dealing Room Buzz: Alstom, DRL, Raymond, Titan'
10
+ - text: 'like Cummins, Voltas and Engineers India:Capital goods names like Cummins,
11
+ Voltas and Engineers India to fetch returns: Manish Sonthalia'
12
+ - text: DCM Shriram Consolidated rallies 17%:DCM Shriram Consolidated rallies 17%,
13
+ hits 52-week high on plans to reward shareholders
14
+ - text: 'Deepak Mohoni, trendwatchindia.com:Tinplate is certainly a hold: Deepak Mohoni,
15
+ trendwatchindia.com'
16
+ - text: Dollar flatlines ahead of:Dollar flatlines ahead of Janet Yellen, Mario Draghi
17
+ at Jackson Hole
18
+ metrics:
19
+ - accuracy
20
+ pipeline_tag: text-classification
21
+ library_name: setfit
22
+ inference: false
23
+ base_model: sentence-transformers/all-mpnet-base-v2
24
+ ---
25
+
26
+ # SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
27
+
28
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
29
+
30
+ The model has been trained using an efficient few-shot learning technique that involves:
31
+
32
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
33
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
34
+
35
+ This model was trained within the context of a larger system for ABSA, which looks like so:
36
+
37
+ 1. Use a spaCy model to select possible aspect span candidates.
38
+ 2. Use a SetFit model to filter these possible aspect span candidates.
39
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
40
+
41
+ ## Model Details
42
+
43
+ ### Model Description
44
+ - **Model Type:** SetFit
45
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
46
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
47
+ - **spaCy Model:** en_core_web_sm
48
+ - **SetFitABSA Aspect Model:** [/scratch/project_2006600/fin_experiment/models/setfit-finance-aspect](https://huggingface.co//scratch/project_2006600/fin_experiment/models/setfit-finance-aspect)
49
+ - **SetFitABSA Polarity Model:** [/scratch/project_2006600/fin_experiment/models/setfit-finance-polarity](https://huggingface.co//scratch/project_2006600/fin_experiment/models/setfit-finance-polarity)
50
+ - **Maximum Sequence Length:** 384 tokens
51
+ - **Number of Classes:** 3 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | neutral | <ul><li>'Ponzi schemes: Sebi seeks quarterly meetings:Ponzi schemes: Sebi seeks quarterly meetings of state panels'</li><li>'European shares steady, pegged:European shares steady, pegged back by Vodafone'</li><li>'Bajaj Auto Q2 net at:Bajaj Auto Q2 net at Rs 591 crore'</li></ul> |
66
+ | negative | <ul><li>'pegged back by Vodafone:European shares steady, pegged back by Vodafone'</li><li>'M&M Finance plunges 8.5%:M&M Finance plunges 8.5% as brokers cut target price post Q3 results'</li><li>"' rating on Tata Motors; prefer Hero:Have 'sell' rating on Tata Motors; prefer Hero MotoCorp among auto stocks: Harendra Kumar"</li></ul> |
67
+ | positive | <ul><li>"Buy' on Wipro with target of:Maintain 'Buy' on Wipro with target of Rs 528: Sharekhan"</li><li>"Motors; prefer Hero MotoCorp among auto stocks:Have 'sell' rating on Tata Motors; prefer Hero MotoCorp among auto stocks: Harendra Kumar"</li><li>'Servalakshmi Paper debuts at over:Servalakshmi Paper debuts at over 3 pc premium on BSE'</li></ul> |
68
+
69
+ ## Uses
70
+
71
+ ### Direct Use for Inference
72
+
73
+ First install the SetFit library:
74
+
75
+ ```bash
76
+ pip install setfit
77
+ ```
78
+
79
+ Then you can load this model and run inference.
80
+
81
+ ```python
82
+ from setfit import AbsaModel
83
+
84
+ # Download from the 🤗 Hub
85
+ model = AbsaModel.from_pretrained(
86
+ "/scratch/project_2006600/fin_experiment/models/setfit-finance-aspect",
87
+ "/scratch/project_2006600/fin_experiment/models/setfit-finance-polarity",
88
+ )
89
+ # Run inference
90
+ preds = model("The food was great, but the venue is just way too busy.")
91
+ ```
92
+
93
+ <!--
94
+ ### Downstream Use
95
+
96
+ *List how someone could finetune this model on their own dataset.*
97
+ -->
98
+
99
+ <!--
100
+ ### Out-of-Scope Use
101
+
102
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
103
+ -->
104
+
105
+ <!--
106
+ ## Bias, Risks and Limitations
107
+
108
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
109
+ -->
110
+
111
+ <!--
112
+ ### Recommendations
113
+
114
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
115
+ -->
116
+
117
+ ## Training Details
118
+
119
+ ### Training Set Metrics
120
+ | Training set | Min | Median | Max |
121
+ |:-------------|:----|:--------|:----|
122
+ | Word count | 6 | 14.2133 | 29 |
123
+
124
+ | Label | Training Sample Count |
125
+ |:---------|:----------------------|
126
+ | negative | 536 |
127
+ | neutral | 749 |
128
+ | positive | 703 |
129
+
130
+ ### Training Hyperparameters
131
+ - batch_size: (64, 64)
132
+ - num_epochs: (2, 2)
133
+ - max_steps: -1
134
+ - sampling_strategy: oversampling
135
+ - body_learning_rate: (2e-05, 1e-05)
136
+ - head_learning_rate: 0.01
137
+ - loss: CosineSimilarityLoss
138
+ - distance_metric: cosine_distance
139
+ - margin: 0.25
140
+ - end_to_end: False
141
+ - use_amp: True
142
+ - warmup_proportion: 0.1
143
+ - l2_weight: 0.01
144
+ - seed: 42
145
+ - eval_max_steps: -1
146
+ - load_best_model_at_end: True
147
+
148
+ ### Training Results
149
+ | Epoch | Step | Training Loss | Validation Loss |
150
+ |:------:|:----:|:-------------:|:---------------:|
151
+ | 0.0000 | 1 | 0.2969 | - |
152
+ | 0.0025 | 50 | 0.3201 | - |
153
+ | 0.0049 | 100 | 0.2933 | 0.2839 |
154
+ | 0.0074 | 150 | 0.262 | - |
155
+ | 0.0098 | 200 | 0.2523 | 0.2480 |
156
+ | 0.0123 | 250 | 0.2403 | - |
157
+ | 0.0147 | 300 | 0.2185 | 0.2199 |
158
+ | 0.0172 | 350 | 0.1983 | - |
159
+ | 0.0196 | 400 | 0.1874 | 0.2003 |
160
+ | 0.0221 | 450 | 0.1727 | - |
161
+ | 0.0245 | 500 | 0.1568 | 0.1882 |
162
+ | 0.0270 | 550 | 0.1386 | - |
163
+ | 0.0294 | 600 | 0.1181 | 0.1742 |
164
+ | 0.0319 | 650 | 0.1023 | - |
165
+ | 0.0343 | 700 | 0.0877 | 0.1766 |
166
+ | 0.0368 | 750 | 0.0717 | - |
167
+ | 0.0392 | 800 | 0.0555 | 0.1854 |
168
+ | 0.0417 | 850 | 0.0447 | - |
169
+ | 0.0441 | 900 | 0.0343 | 0.1841 |
170
+
171
+ ### Framework Versions
172
+ - Python: 3.11.11
173
+ - SetFit: 1.1.0
174
+ - Sentence Transformers: 3.3.1
175
+ - spaCy: 3.7.5
176
+ - Transformers: 4.42.1
177
+ - PyTorch: 2.5.1+cu124
178
+ - Datasets: 3.2.0
179
+ - Tokenizers: 0.19.1
180
+
181
+ ## Citation
182
+
183
+ ### BibTeX
184
+ ```bibtex
185
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
186
+ doi = {10.48550/ARXIV.2209.11055},
187
+ url = {https://arxiv.org/abs/2209.11055},
188
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
189
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
190
+ title = {Efficient Few-Shot Learning Without Prompts},
191
+ publisher = {arXiv},
192
+ year = {2022},
193
+ copyright = {Creative Commons Attribution 4.0 International}
194
+ }
195
+ ```
196
+
197
+ <!--
198
+ ## Glossary
199
+
200
+ *Clearly define terms in order to be accessible across audiences.*
201
+ -->
202
+
203
+ <!--
204
+ ## Model Card Authors
205
+
206
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
207
+ -->
208
+
209
+ <!--
210
+ ## Model Card Contact
211
+
212
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
213
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.42.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "span_context": 3,
3
+ "spacy_model": "en_core_web_sm",
4
+ "normalize_embeddings": false,
5
+ "labels": [
6
+ "negative",
7
+ "neutral",
8
+ "positive"
9
+ ]
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:104e4bf6fe2fc6277b2c19b3ba231f152aea5578a157f5496f6a56e108829955
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82a79584241ba6917aba72ba12af73a373d4af2bea60ea13c100c93e37d6dd91
3
+ size 19375
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff