File size: 2,667 Bytes
3d0ebea f50be2d b6df0b8 f50be2d 29b538e f50be2d 420551c 2b80a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
tags:
- generated_from_trainer
datasets:
- invoice
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-fine-tuning-invoice
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Invoice
type: invoice
args: invoice
metrics:
- name: Precision
type: precision
value: 1.0
- name: Recall
type: recall
value: 1.0
- name: F1
type: f1
value: 1.0
- name: Accuracy
type: accuracy
value: 1.0
---
## LayoutLMv3-Fine-Tuning-Invoice Model
#### Model description
**LayoutLMv3-Fine-Tuning-Invoice Model** is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset. For the fine-tuning, We used [Invoice Dataset] that includes 12 labels ('Other', 'ABN', 'BILLER', 'BILLER_ADDRESS', 'BILLER_POST_CODE', 'DUE_DATE', 'GST', 'INVOICE_DATE', 'INVOICE_NUMBER', 'SUBTOTAL', 'TOTAL', 'BILLER_ADDRESS').
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.005334
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 2
- eval_batch_size: 2
- optimizer: epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000
### Training results
| Training Loss | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 100 | 0.070030 | 0.972000 | 0.985801 | 0.978852 | 0.997051 |
| No log | 200 | 0.017637 | 0.972000 | 0.985801 | 0.978852 | 0.997051 |
| No log | 300 | 0.015573 | 0.972000 | 0.985801 | 0.978852 | 0.997051 |
| No log | 400 | 0.011000 | 0.973737 | 0.977688 | 0.978852 | 0.996419 |
| 0.110800 | 500 | 0.005334 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.110800 | 600 | 0.002994 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.110800 | 700 | 0.002330 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.110800 | 800 | 0.002188 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.110800 | 900 | 0.002105 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.004900 | 1000 | 0.002111 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.20.1
- Datasets 2.1.0 |