Ammar-alhaj-ali
commited on
Commit
•
f50be2d
1
Parent(s):
2d54407
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## LayoutLMv3-Fine-Tuning-Invoice Model
|
3 |
+
|
4 |
+
#### Model description
|
5 |
+
**LayoutLMv3-Fine-Tuning-Invoice Model** is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset. For the fine-tuning, We used [Invoice Dataset] that includes 12 labels ('Other', 'ABN', 'BILLER', 'BILLER_ADDRESS', 'BILLER_POST_CODE', 'DUE_DATE', 'GST', 'INVOICE_DATE', 'INVOICE_NUMBER', 'SUBTOTAL', 'TOTAL', 'BILLER_ADDRESS').
|
6 |
+
|
7 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset.
|
8 |
+
|
9 |
+
|
10 |
+
It achieves the following results on the evaluation set:
|
11 |
+
- Loss: 0.005334
|
12 |
+
- Precision: 1.0
|
13 |
+
- Recall: 1.0
|
14 |
+
- F1: 1.0
|
15 |
+
- Accuracy: 1.0
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
## Training procedure
|
20 |
+
### Training hyperparameters
|
21 |
+
The following hyperparameters were used during training:
|
22 |
+
- learning_rate: 1.5e-05
|
23 |
+
- train_batch_size: 2
|
24 |
+
- eval_batch_size: 2
|
25 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
26 |
+
- lr_scheduler_type: cosine
|
27 |
+
- training_steps: 1000
|
28 |
+
|
29 |
+
### Training results
|
30 |
+
|
31 |
+
| Training Loss | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
32 |
+
|:-------------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
33 |
+
| No log | 100 | 0.0878 | 0.968 | 0.9817 | 0.9748 | 0.9966 |
|
34 |
+
| No log | 200 | 0.0241 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
35 |
+
| No log | 300 | 0.0186 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
36 |
+
| No log | 400 | 0.0184 | 0.9854 | 0.9574 | 0.9712 | 0.9956 |
|
37 |
+
| 0.110800 | 500 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
|
38 |
+
| 0.110800 | 600 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 |
|
39 |
+
| 0.110800 | 700 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 |
|
40 |
+
| 0.110800 | 800 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
|
41 |
+
| 0.110800 | 900 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
|
42 |
+
| 0.004900 | 1000 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
### Framework versions
|
47 |
+
|
48 |
+
- Transformers 4.20.0.dev0
|
49 |
+
- Pytorch 1.11.0+cu113
|
50 |
+
- Datasets 2.2.2
|
51 |
+
- Tokenizers 0.12.1
|