Ammar-alhaj-ali commited on
Commit
f50be2d
1 Parent(s): 2d54407

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ## LayoutLMv3-Fine-Tuning-Invoice Model
3
+
4
+ #### Model description
5
+ **LayoutLMv3-Fine-Tuning-Invoice Model** is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset. For the fine-tuning, We used [Invoice Dataset] that includes 12 labels ('Other', 'ABN', 'BILLER', 'BILLER_ADDRESS', 'BILLER_POST_CODE', 'DUE_DATE', 'GST', 'INVOICE_DATE', 'INVOICE_NUMBER', 'SUBTOTAL', 'TOTAL', 'BILLER_ADDRESS').
6
+
7
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset.
8
+
9
+
10
+ It achieves the following results on the evaluation set:
11
+ - Loss: 0.005334
12
+ - Precision: 1.0
13
+ - Recall: 1.0
14
+ - F1: 1.0
15
+ - Accuracy: 1.0
16
+
17
+
18
+
19
+ ## Training procedure
20
+ ### Training hyperparameters
21
+ The following hyperparameters were used during training:
22
+ - learning_rate: 1.5e-05
23
+ - train_batch_size: 2
24
+ - eval_batch_size: 2
25
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
26
+ - lr_scheduler_type: cosine
27
+ - training_steps: 1000
28
+
29
+ ### Training results
30
+
31
+ | Training Loss | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
32
+ |:-------------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
33
+ | No log | 100 | 0.0878 | 0.968 | 0.9817 | 0.9748 | 0.9966 |
34
+ | No log | 200 | 0.0241 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
35
+ | No log | 300 | 0.0186 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
36
+ | No log | 400 | 0.0184 | 0.9854 | 0.9574 | 0.9712 | 0.9956 |
37
+ | 0.110800 | 500 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
38
+ | 0.110800 | 600 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 |
39
+ | 0.110800 | 700 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 |
40
+ | 0.110800 | 800 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
41
+ | 0.110800 | 900 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
42
+ | 0.004900 | 1000 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
43
+
44
+
45
+
46
+ ### Framework versions
47
+
48
+ - Transformers 4.20.0.dev0
49
+ - Pytorch 1.11.0+cu113
50
+ - Datasets 2.2.2
51
+ - Tokenizers 0.12.1