File size: 11,509 Bytes
c660edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Adapted from https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/tokenization_qwen.py
import os
from typing import Collection, List, Optional, Dict, Set, Tuple, Union

from functools import cached_property

import base64

from transformers import PreTrainedTokenizer, AddedToken, AutoConfig
from transformers.models.auto.tokenization_auto import get_tokenizer_config
import tiktoken


"""
    This tokenizer is almost identical to tiktoken.get_encoding("cl100k_base")
    with a few additional special tokens to support the ChatML format.

    TODO(bapatra): Right now, I do not save the special tokens to the vocab file.
    Maybe in the future, that would be useful? Can add that support later.

"""

def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
    with open(tiktoken_bpe_file, "rb") as f:
        contents = f.read()
    return {
        base64.b64decode(token): int(rank)
        for token, rank in (line.split() for line in contents.splitlines() if line)
    }

# On the megatron codebase, we pad vocabularies to ensure matrix multiplication is fast.
# this in turn causes some indices to be empty. We account for these empty indices by adding
# dummy tokens to the tokenizer.

EFFECTIVE_PADDED_VOCAB_SIZE = 100352
ACTUAL_VOCAB_SIZE = 100276


DUMMY_TOKENS = {
    f"<|dummy_id_{11 + offset}|>": 100276 + offset
    for offset in range(1, EFFECTIVE_PADDED_VOCAB_SIZE - ACTUAL_VOCAB_SIZE)
}

SPECIAL_TOKENS = {
    # tiktoken.get_encoding("cl100k_base")._special_tokens
    '<|endoftext|>': 100257,
    '<|fim_prefix|>': 100258,
    '<|fim_middle|>': 100259,
    '<|fim_suffix|>': 100260,
    # Special tokens for post-training
    "<|system|>": 100261, 
    "<|user|>": 100262,
    "<|assistant|>": 100263,
    # Dummy unused tokens
    "<|dummy_id_0|>": 100264,
    "<|dummy_id_1|>": 100265,
    # Special tokens for post-training continued
    "<|end|>": 100266,
    # Some dummy tokens, so that tokenization is contiguous and does not cause issues
    # Note that the 100256th token of tiktoken.get_encoding("cl100k_base") does not
    # actually map to anything. So we use a dummy token here.
    "<|dummy_id_2|>": 100256,
    # Likewise, tokens from 100267 to 100275 are also unused
    "<|dummy_id_3|>": 100267,
    "<|dummy_id_4|>": 100268,
    "<|dummy_id_5|>": 100269,
    "<|dummy_id_6|>": 100270,
    "<|dummy_id_7|>": 100271,
    "<|dummy_id_8|>": 100272,
    "<|dummy_id_9|>": 100273,
    "<|dummy_id_10|>": 100274,
    "<|dummy_id_11|>": 100275,
    # The final end of prompt token
    # (unused, but present as a part of tiktoken.get_encoding("cl100k_base")._special_tokens)
    '<|endofprompt|>': 100276,
    # Dummy tokens to account for padding of the tokenizer
    # We pad to ensure tensor cores are used for vocab multiplication
    **DUMMY_TOKENS
}

class Phi3SmallTokenizer(PreTrainedTokenizer):
    vocab_files_names = {
        "vocab_file": "cl100k_base.tiktoken"
    }

    model_input_names: List[str] = ["input_ids", "attention_mask"]
    padding_side = "left"

    def __init__(
        self,
        vocab_file: Optional[str] = None,
        errors: str = "replace",
        **kwargs
    ) -> None:
        # PreTrainedTokenizer's init calls _add_tokens, which in turn checks
        # if the token is present in `self.special_tokens``. Hence instantiating it here.
        # The way Qwen gets around this is by checking against SPECIAL_TOKENS
        # But I think it's better to check against the objects own `special_tokens`
        # in case we eventually want to allow the tokenizer to have special tokens.
        self.special_tokens = SPECIAL_TOKENS

        super().__init__(**kwargs)
        self.errors = errors

        base = tiktoken.get_encoding("cl100k_base")
        if vocab_file is None:
            self.mergeable_ranks: Dict[bytes, int] = base._mergeable_ranks
        else:
            self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)

        self.pat_str = base._pat_str
        
        enc = tiktoken.Encoding(
            name="phi3small",
            pat_str=self.pat_str,
            mergeable_ranks=self.mergeable_ranks,
            special_tokens=self.special_tokens,
        )
        self.tokenizer = enc

        self.decoder: Dict[int, bytes] = {
            v: k for k, v in self.mergeable_ranks.items()
        }
        self.decoder.update({v: k for k, v in self.special_tokens.items()})
        
        self.eod_id = self.tokenizer.eot_token
        self._eos_token = self._convert_id_to_token(self.eod_id)

        # Setting the bos_token to be the same as the eos_token
        # Note that this is **not** the correct thing to do, and is done
        # just so that some of the downstream libraries do not break.
        self._bos_token = self._eos_token

        # Assign the special tokens to class variables
        self.system_id = self.special_tokens["<|system|>"]
        self.user_id = self.special_tokens["<|user|>"]
        self.assistant_id = self.special_tokens["<|assistant|>"]
        self.end_id = self.special_tokens["<|end|>"]
    
    @cached_property
    def dummy_token_indices(self) -> List[int]:
        # There are some additional special tokens in the cl100k_base tokenizer
        # that we do not use. Hence, we also consider them to be dummy tokens.
        additional_tokens = [
            "<|fim_prefix|>",
            "<|fim_middle|>",
            "<|fim_suffix|>",
            "<|endofprompt|>"
        ]
        dummy_token_indices = [index for token, index in self.special_tokens.items() if "dummy_id" in token]
        dummy_token_indices.extend([self.special_tokens[token] for token in additional_tokens])
        return sorted(dummy_token_indices)

    def __getstate__(self):
        state = self.__dict__.copy()
        del state["tokenizer"]
        return state
    
    def __setstate__(self, state):
        self.__dict__ = state
        enc = tiktoken.Encoding(
            name="cl100k_im",
            pat_str=self.pat_str,
            mergeable_ranks=self.mergeable_ranks,
            special_tokens=self.special_tokens,
        )
        self.tokenizer = enc
    
    def __len__(self):
        return self.tokenizer.n_vocab
    
    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        *init_inputs,
        **kwargs,
    ):
        cls_kwargs = kwargs
        # First try to load from the tokenization config if it exists
        tokenization_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
        if tokenization_config:
            cls_kwargs = {
                **tokenization_config,
                **cls_kwargs
            }
        else:
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
            cls_kwargs["model_max_length"] = config.max_position_embeddings
        return cls(**cls_kwargs)

    def get_vocab(self) -> Dict[Union[str, bytes], int]:
        return {**self.mergeable_ranks, **self.special_tokens}
    
    def convert_tokens_to_ids(
        self,
        tokens: Union[bytes, str, List[Union[bytes, str]]]
    ) -> Union[int, List[int]]:
        ids = []
        if isinstance(tokens, (str, bytes)):
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.mergeable_ranks.get(tokens)
        ids: List[int] = []
        for token in tokens:
            ids.append(self.convert_tokens_to_ids(token))
        return ids

    def _add_tokens(
            self,
            new_tokens: Union[List[str], List[AddedToken]],
            special_tokens: bool = False,
    ) -> int:
        if not special_tokens and new_tokens:
            raise ValueError("Only special tokens can be added to this tokenizer")
        for token in new_tokens:
            surface_form = token.content if isinstance(token, AddedToken) else token
            if surface_form not in self.special_tokens:
                raise ValueError(
                    "For now, we do not support unknown special tokens\n"
                    "In the future, if there is a need for this, we can add special tokens to the tokenizer\n"
                    "starting from rank 100261 - 100263 and then 100266 - 100275.\n"
                    "And finally, we can re-construct the enc object back\n"
                )
        return 0

    def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
        file_path = os.path.join(save_directory, "cl100k_base.tiktoken")
        with open(file_path, "w") as f:
            for token, rank in self.mergeable_ranks.items():
                line = base64.b64encode(token).decode("utf-8") + " " + str(rank) + "\n"
                f.write(line)
        return (file_path,)

    def tokenize(
        self,
        text: str,
        allowed_special: Union[Set, str] = "all",
        disallowed_special: Union[Collection, str] = (),
        **kwargs
    ) -> List[Union[bytes, str]]:
        tokens: List[Union[bytes, str]] = []
        for token_id in self.tokenizer.encode(
            text, allowed_special=allowed_special, disallowed_special=disallowed_special
        ):
            tokens.append(self.decoder[token_id])
        return tokens

    def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
        """
        Converts a sequence of tokens in a single string.
        """
        text = ""
        temp = b""
        for t in tokens:
            if isinstance(t, str):
                if temp:
                    text += temp.decode("utf-8", errors=self.errors)
                    temp = b""
                text += t
            elif isinstance(t, bytes):
                temp += t
            else:
                raise TypeError("token should only be of type types or str")
        if temp:
            text += temp.decode("utf-8", errors=self.errors)
        return text

    @property
    def vocab_size(self):
        return self.tokenizer.n_vocab

    @property
    def eos_token_id(self) -> int:
        return self.eod_id

    def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
        """Converts an id to a token, special tokens included"""
        if index in self.decoder:
            return self.decoder[index]
        raise ValueError("unknown ids")

    def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
        """Converts a token to an id using the vocab, special tokens included"""
        if token in self.special_tokens:
            return self.special_tokens[token]
        if token in self.mergeable_ranks:
            return self.mergeable_ranks[token]
        raise ValueError("unknown token")

    def _tokenize(self, text: str, **kwargs):
        """
        Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
        vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
        Do NOT take care of added tokens.
        """
        raise NotImplementedError

    def _decode(
        self,
        token_ids: Union[int, List[int]],
        skip_special_tokens: bool = False,
        errors: str = None,
        **kwargs,
    ) -> str:
        if isinstance(token_ids, int):
            token_ids = [token_ids]
        if skip_special_tokens:
            token_ids = [i for i in token_ids if i < self.eod_id]
        return self.tokenizer.decode(token_ids, errors=errors or self.errors)