Tamil Named Entity Recognition
Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Tamil language.Label ID and its corresponding label name
Label ID | Label Name |
---|---|
0 | O |
1 | B-PER |
2 | I-PER |
3 | B-ORG |
4 | I-ORG |
5 | B-LOC |
6 | I-LOC |
Results
Step | Training Loss | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 |
---|---|---|---|---|---|---|---|---|---|
1000 | 0.386900 | 0.300006 | 0.833469 | 0.824748 | 0.829086 | 0.912857 | 0.835343 | 0.781625 | 0.867752 |
2000 | 0.210200 | 0.251389 | 0.845455 | 0.842052 | 0.843750 | 0.924861 | 0.851711 | 0.790198 | 0.886515 |
3000 | 0.140000 | 0.264964 | 0.866952 | 0.856137 | 0.861510 | 0.930141 | 0.874872 | 0.818150 | 0.885203 |
4000 | 0.095400 | 0.298542 | 0.860871 | 0.882696 | 0.871647 | 0.935692 | 0.881348 | 0.829285 | 0.899245 |
5000 | 0.062200 | 0.296011 | 0.871805 | 0.878471 | 0.875125 | 0.938806 | 0.875434 | 0.850889 | 0.898148 |
6000 | 0.042200 | 0.320418 | 0.868416 | 0.879074 | 0.873713 | 0.937497 | 0.877588 | 0.833611 | 0.907737 |
Example
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Ambareeshkumar/BERT-Tamil")
model = AutoModelForTokenClassification.from_pretrained("Ambareeshkumar/BERT-Tamil")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "இந்திய"
ner_results = nlp(example)
ner_results
- Downloads last month
- 202
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.