File size: 2,108 Bytes
6da99a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: face_poofing_detection
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# face_poofing_detection
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6273
- Accuracy: 0.9871
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 6.3243 | 0.9846 | 48 | 5.6154 | 0.8919 |
| 4.4794 | 1.9897 | 97 | 4.3516 | 0.9202 |
| 3.8293 | 2.9949 | 146 | 3.6687 | 0.9730 |
| 3.2121 | 4.0 | 195 | 3.1092 | 0.9820 |
| 2.733 | 4.9846 | 243 | 2.6919 | 0.9743 |
| 2.3114 | 5.9897 | 292 | 2.2633 | 0.9923 |
| 1.9962 | 6.9949 | 341 | 1.9594 | 0.9923 |
| 1.7789 | 8.0 | 390 | 1.7641 | 0.9897 |
| 1.6642 | 8.9846 | 438 | 1.6506 | 0.9910 |
| 1.6005 | 9.8462 | 480 | 1.6273 | 0.9871 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
|