File size: 26,896 Bytes
96b7ded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import math
import torch
import torch.utils.checkpoint

from torch import nn
from torch.cuda.amp import autocast
from transformers.utils import logging
from transformers.activations import ACT2FN
from transformers.pytorch_utils import Conv1D
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutput

from .configuration_linglong import LingLongConfig

logger = logging.get_logger(__name__)


class LingLongAttention(nn.Module):

    def __init__(self, config, layer_idx=None):
        super().__init__()

        n_position = config.n_position
        self.register_buffer(
            'bias',
            torch.tril(torch.ones((n_position, n_position), dtype=torch.bool)).view(
                1, 1, n_position, n_position
            ),
            persistent=False,
        )
        self.register_buffer('masked_bias', torch.tensor(-1e4), persistent=False)

        self.n_embd = config.n_embd
        self.n_head = config.n_head
        self.head_dim = self.n_embd // self.n_head
        self.split_size = self.n_embd
        if self.head_dim * self.n_head != self.n_embd:
            raise ValueError(
                f'`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.n_embd} and `num_heads`:'
                f' {self.n_head}).'
            )

        self.scale_attn_weights = config.scale_attn_weights

        # Layer-wise attention scaling, reordering, and upcasting
        self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
        self.layer_idx = layer_idx
        self.reorder_and_upcast_attn = config.reorder_and_upcast_attn

        self.c_attn = Conv1D(3 * self.n_embd, self.n_embd)
        self.c_proj = Conv1D(self.n_embd, self.n_embd)

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        # LingLong sparse attention.
        self.mode = config.attn_mode
        self.stride = config.attn_stride
        self.c = config.attn_c
        self.causal_mask = None

    def _causal_mask(self, query_length, key_length):
        return self.bias[:, :, key_length - query_length: key_length, :key_length]

    def _sparse_causal_mask(self, query_length, key_length):
        layout = torch.zeros([key_length, key_length], dtype=torch.bool, device=self.bias.device)
        for idx in range(self.c):
            layout[:, (self.stride - 1 - idx)::self.stride] = 1
        for q_idx in range(key_length):
            row = q_idx // self.stride
            layout[q_idx, row * self.stride:(row + 1) * self.stride] = 1
            # Any query cannot attend to keys above it.
            layout[q_idx, q_idx + 1:] = 0
        return layout[(key_length - query_length):].view(1, 1, query_length, key_length)

    def _attn(self, query, key, value, attention_mask=None):
        attn_weights = torch.matmul(query, key.transpose(-1, -2))

        if self.scale_attn_weights:
            attn_weights = attn_weights / torch.full(
                [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
            )

        # Layer-wise attention scaling
        if self.scale_attn_by_inverse_layer_idx:
            attn_weights = attn_weights / float(self.layer_idx + 1)

        # if only "normal" attention layer implements causal mask
        query_length, key_length = query.size(-2), key.size(-2)
        if self.causal_mask is None or self.causal_mask.size() != torch.Size([1, 1, query_length, key_length]):
            if self.mode == 'sparse' and self.layer_idx % 2 != 0:
                self.causal_mask = self._sparse_causal_mask(query_length, key_length)
            else:
                self.causal_mask = self._causal_mask(query_length, key_length)
        mask_value = torch.finfo(attn_weights.dtype).min
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
        attn_weights = torch.where(self.causal_mask, attn_weights.to(attn_weights.dtype), mask_value)

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
        attn_weights = attn_weights.type(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None):
        # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
        bsz, num_heads, q_seq_len, dk = query.size()
        _, _, k_seq_len, _ = key.size()

        # Preallocate attn_weights for `baddbmm`
        attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)

        # Compute Scale Factor
        scale_factor = 1.0
        if self.scale_attn_weights:
            scale_factor /= float(value.size(-1)) ** 0.5

        if self.scale_attn_by_inverse_layer_idx:
            scale_factor /= float(self.layer_idx + 1)

        # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
        with autocast(enabled=False):
            q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
            attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
            attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)

        # if only "normal" attention layer implements causal mask
        query_length, key_length = query.size(-2), key.size(-2)
        if self.causal_mask is None or self.causal_mask.size() != torch.Size([1, 1, query_length, key_length]):
            if self.mode == 'sparse' and self.layer_idx % 2 != 0:
                self.causal_mask = self._sparse_causal_mask(query_length, key_length)
            else:
                self.causal_mask = self._causal_mask(query_length, key_length)
        mask_value = torch.finfo(attn_weights.dtype).min
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
        attn_weights = torch.where(self.causal_mask, attn_weights, mask_value)

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
        if attn_weights.dtype != torch.float32:
            raise RuntimeError('Error with upcasting, attn_weights does not have dtype torch.float32.')
        attn_weights = attn_weights.type(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    @staticmethod
    def _split_heads(tensor, num_heads, attn_head_size):
        """

        Splits hidden_size dim into attn_head_size and num_heads

        """
        new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
        tensor = tensor.view(new_shape)
        return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)

    @staticmethod
    def _merge_heads(tensor, num_heads, attn_head_size):
        """

        Merges attn_head_size dim and num_attn_heads dim into hidden_size

        """
        tensor = tensor.permute(0, 2, 1, 3).contiguous()
        new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
        return tensor.view(new_shape)

    def forward(

            self,

            hidden_states,

            layer_past=None,

            attention_mask=None,

            use_cache=False,

            output_attentions=False,

    ):
        query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
        query = self._split_heads(query, self.n_head, self.head_dim)
        key = self._split_heads(key, self.n_head, self.head_dim)
        value = self._split_heads(value, self.n_head, self.head_dim)

        if layer_past is not None:
            past_key, past_value = layer_past
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        if self.reorder_and_upcast_attn:
            attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask)
        else:
            attn_output, attn_weights = self._attn(query, key, value, attention_mask)

        attn_output = self._merge_heads(attn_output, self.n_head, self.head_dim)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


class LingLongMLP(nn.Module):

    def __init__(self, intermediate_size, config):
        super().__init__()
        n_embd = config.n_embd
        self.c_fc = Conv1D(intermediate_size, n_embd)
        self.c_proj = Conv1D(n_embd, intermediate_size)
        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, hidden_states):
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class LingLongBlock(nn.Module):

    def __init__(self, config, layer_idx=None):
        super().__init__()
        n_embd = config.n_embd
        inner_dim = config.n_inner if config.n_inner is not None else 4 * n_embd

        self.ln_1 = nn.LayerNorm(n_embd, eps=config.layer_norm_epsilon)
        self.attn = LingLongAttention(config, layer_idx=layer_idx)
        self.ln_2 = nn.LayerNorm(n_embd, eps=config.layer_norm_epsilon)

        self.mlp = LingLongMLP(inner_dim, config)

    def forward(

            self,

            hidden_states,

            layer_past=None,

            attention_mask=None,

            use_cache=False,

            output_attentions=False,

    ):
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]
        # residual connection
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions)


class LingLongPreTrainedModel(PreTrainedModel):
    """

    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained

    models.

    """

    config_class = LingLongConfig
    base_model_prefix = 'transformer'
    supports_gradient_checkpointing = True
    _no_split_modules = ['LingLongBlock']
    _skip_keys_device_placement = 'past_key_values'

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear, Conv1D)):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name == 'c_proj.weight':
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))


class LingLongModel(LingLongPreTrainedModel):

    def __init__(self, config: LingLongConfig):
        super().__init__(config)
        self.n_embd = config.n_embd
        self.wte = nn.Embedding(config.vocab_size, self.n_embd)
        self.wpe = nn.Embedding(config.n_position, self.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([LingLongBlock(config, layer_idx=i) for i in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(self.n_embd, eps=config.layer_norm_epsilon)

        # Model parallel
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    def forward(

            self,

            input_ids: torch.LongTensor | None = None,

            past_key_values: tuple[tuple[torch.Tensor]] | None = None,

            attention_mask: torch.FloatTensor | None = None,

            position_ids: torch.LongTensor | None = None,

            inputs_embeds: torch.FloatTensor | None = None,

            use_cache: bool | None = None,

            output_attentions: bool | None = None,

            output_hidden_states: bool | None = None,

            return_dict: bool | None = None,

    ) -> tuple | BaseModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time.')
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError('You have to specify either input_ids or inputs_embeds.')

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0)

        # LingLongAttention mask.
        if attention_mask is not None:
            if batch_size <= 0:
                raise ValueError('batch_size has to be defined and > 0.')
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and the dtype's smallest value for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                # noinspection PyUnresolvedReferences
                logger.warning_once(
                    '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
                )
                use_cache = False

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                outputs = self._gradient_checkpointing_func(
                    block.__call__,
                    hidden_states,
                    None,
                    attention_mask,
                    use_cache,
                    output_attentions,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
                if v is not None
            )

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class LingLongForCausalLM(LingLongPreTrainedModel):
    _tied_weights_keys = ['lm_head.weight']

    def __init__(self, config):
        super().__init__(config)
        self.transformer = LingLongModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        # Omit tokens covered by past_key_values
        if past_key_values:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

        attention_mask = kwargs.get('attention_mask', None)
        position_ids = kwargs.get('position_ids', None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            # noinspection PyUnresolvedReferences
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1]:]
        else:
            position_ids = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {'inputs_embeds': inputs_embeds}
        else:
            model_inputs = {'input_ids': input_ids}

        model_inputs.update(
            {
                'past_key_values': past_key_values,
                'use_cache': kwargs.get('use_cache'),
                'position_ids': position_ids,
                'attention_mask': attention_mask,
            }
        )

        return model_inputs

    def forward(

            self,

            input_ids: torch.LongTensor | None = None,

            past_key_values: tuple[tuple[torch.Tensor]] | None = None,

            attention_mask: torch.FloatTensor | None = None,

            position_ids: torch.LongTensor | None = None,

            inputs_embeds: torch.FloatTensor | None = None,

            labels: torch.LongTensor | None = None,

            use_cache: bool | None = None,

            output_attentions: bool | None = None,

            output_hidden_states: bool | None = None,

            return_dict: bool | None = None,

    ) -> tuple | CausalLMOutput:
        r"""

        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set

            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`

            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutput(
            loss=loss,
            logits=lm_logits,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
    def _reorder_cache(

            past_key_values: tuple[tuple[torch.Tensor]],

            beam_idx: torch.Tensor,

            **kwargs,

    ) -> tuple[tuple[torch.Tensor]]:
        """

        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or

        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct

        beam_idx at every generation step.

        """
        # noinspection PyTypeChecker
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past_key_values
        )