Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - c64ff0d01392d1e4_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c64ff0d01392d1e4_train_data.json
  type:
    field_instruction: prompt_type
    field_output: prompt_text
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c31a0826-774c-48af-86bb-629bd7ef2583
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 8832
micro_batch_size: 4
mlflow_experiment_name: /tmp/c64ff0d01392d1e4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: fb46a0d2-7710-4f02-ba9b-a717c0c8c0cd
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fb46a0d2-7710-4f02-ba9b-a717c0c8c0cd
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

c31a0826-774c-48af-86bb-629bd7ef2583

This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8095

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3084

Training results

Training Loss Epoch Step Validation Loss
5.3671 0.0006 1 5.3415
3.1325 0.0649 100 3.3948
3.3967 0.1297 200 3.2506
2.9834 0.1946 300 3.1461
2.6376 0.2594 400 3.0808
3.4206 0.3243 500 2.9966
3.0461 0.3892 600 2.9330
2.2323 0.4540 700 2.8605
2.7525 0.5189 800 2.7908
2.8358 0.5838 900 2.7131
2.8312 0.6486 1000 2.6433
2.4678 0.7135 1100 2.5774
2.5489 0.7783 1200 2.5080
2.3458 0.8432 1300 2.4473
2.3761 0.9081 1400 2.3796
2.0236 0.9729 1500 2.3125
1.9383 1.0378 1600 2.2606
1.8816 1.1026 1700 2.1880
1.8313 1.1675 1800 2.1419
1.9847 1.2324 1900 2.0941
1.8436 1.2972 2000 2.0431
1.6931 1.3621 2100 2.0023
1.593 1.4269 2200 1.9543
1.8932 1.4918 2300 1.9170
2.0395 1.5567 2400 1.8831
1.7951 1.6215 2500 1.8598
1.5655 1.6864 2600 1.8419
1.2855 1.7513 2700 1.8256
1.4709 1.8161 2800 1.8161
1.7402 1.8810 2900 1.8116
1.7177 1.9458 3000 1.8095

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/c31a0826-774c-48af-86bb-629bd7ef2583

Base model

Qwen/Qwen2-0.5B
Adapter
(497)
this model