Table of Contents
TL;DR
This is a Phi-1_5 model trained on meta-math/MetaMathQA. This model is for research purposes only and should not be used in production settings.
Model Description
- Model type: Language model
- Language(s) (NLP): English
- License: Apache 2.0
- Related Models: Phi-1_5
Usage
Find below some example scripts on how to use the model in transformers
:
Using the Pytorch model
from huggingface_hub import notebook_login
from datasets import load_dataset, Dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = "ArtifactAI/phi-metamath"
model = AutoModelForCausalLM.from_pretrained(base_model, trust_remote_code= True)
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
def generate(prompt):
inputs = tokenizer(f'''Below is an instruction that describes a task. Write a response that appropriately completes the request If you are adding additional white spaces, stop writing".\n\n### Instruction:\n{prompt}.\n\n### Response:\n ''', return_tensors="pt", return_attention_mask=False)
streamer = TextStreamer(tokenizer, skip_prompt= True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=500)
generate("What are the common techniques used in identifying a new species, and how can scientists accurately categorize it within the existing taxonomy system?")
Training Data
The model was trained on meta-math/MetaMathQA, a dataset of question/answer pairs.
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
Framework versions
- PEFT 0.6.2
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
Framework versions
- PEFT 0.6.2
Citation
@misc{phi-metamath,
title={phi-metamath},
author={Matthew Kenney},
year={2023}
}
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.