File size: 13,400 Bytes
e4ebb82
 
 
 
 
 
 
4c3c014
6c3e05d
e4ebb82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d35c3
e4ebb82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51d62fc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# coding=utf-8
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

import transformers
from transformers import MllamaPreTrainedModel, MllamaVisionModel, MllamaForCausalLM, AutoModel
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import logging
from transformers.models.mllama.modeling_mllama import _prepare_cross_attention_mask
from .configuration_llama3 import Llama3Config
from .mllama_audio_model import MllamaAudioModel

logger = logging.get_logger(__name__)

class Llama3PreTrainedModel(MllamaPreTrainedModel):
    config_class = Llama3Config
    base_model_prefix = "model"

class Llama3ForConditionalGeneration(Llama3PreTrainedModel, GenerationMixin):
    _supports_quantized_cache = False  # quant cache not supported in encoder-decoder setting

    def __init__(self, config: Llama3Config):
        super().__init__(config)
        self.vocab_size = config.text_config.vocab_size
        self.hidden_size = config.text_config.hidden_size
        self.max_num_tiles = config.vision_config.max_num_tiles
        self.vision_output_dim = config.vision_config.vision_output_dim
        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1

        self.vision_model = MllamaVisionModel._from_config(config.vision_config)
        self.language_model = MllamaForCausalLM._from_config(config.text_config)
        self.audio_model = MllamaAudioModel(config.audio_config, config.text_config)
        self.multi_modal_projector = nn.Linear(
            config.vision_config.vision_output_dim,
            config.text_config.hidden_size,
            bias=True,
        )
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def tie_weights(self):
        return self.language_model.tie_weights()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        audio_features: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        aspect_ratio_mask: Optional[torch.Tensor] = None,
        aspect_ratio_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_mask: Optional[torch.Tensor] = None,
        cross_attention_states: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            num_logits_to_keep (`int`, *optional*):
                Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.


        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, MllamaForConditionalGeneration

        >>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
        >>> model = MllamaForConditionalGeneration.from_pretrained(checkpoint)
        >>> processor = AutoProcessor.from_pretrained(checkpoint)

        >>> prompt = "<|image|>If I had to write a haiku for this one"
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(text=prompt, images=image, return_tensors="pt")

        >>> # Generate
        >>> output = model.generate(**inputs, max_new_tokens=15)

        >>> prompt_len = inputs.input_ids.shape[-1]
        >>> generated_ids = output[:, prompt_len:]
        >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        >>> print(generated_text)
        [', it would be:.\\nA stop sign in Chinatown.\\n']
        ```
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if pixel_values is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
            )

        if pixel_values is not None and cross_attention_states is not None:
            raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")

        if pixel_values is not None:
            if aspect_ratio_ids is None:
                raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
            # get vision tokens from vision model
            vision_outputs = self.vision_model(
                pixel_values=pixel_values,
                aspect_ratio_ids=aspect_ratio_ids,
                aspect_ratio_mask=aspect_ratio_mask,
                output_hidden_states=output_hidden_states,
                output_attentions=output_attentions,
                return_dict=return_dict,
            )
            cross_attention_states = vision_outputs[0]
            cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape(
                -1, cross_attention_states.shape[-2], self.hidden_size
            )

        if cross_attention_mask is not None:
            cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask(
                cross_attention_mask,
                num_vision_tokens=self.vision_model.num_patches,
                dtype=self.dtype,
            )
        else:
            full_text_row_masked_out_mask = None

        if cross_attention_mask is not None and cache_position is not None:
            cross_attention_mask = cross_attention_mask[:, :, cache_position]
            full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]

        if audio_features is not None:
            if input_ids is None:
                raise ValueError("You must provide `input_ids` if you pass `audio_features`.")
            
            inputs_embeds = self.audio_model(
                audio_feature=audio_features,
                input_ids=input_ids,
                return_dict=False,
            )
            input_ids = None
            
        outputs = self.language_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            cross_attention_states=cross_attention_states,
            cross_attention_mask=cross_attention_mask,
            full_text_row_masked_out_mask=full_text_row_masked_out_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            inputs_embeds=inputs_embeds,
            labels=labels,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
            return_dict=return_dict,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
        )

        return outputs

    def prepare_inputs_for_generation(
        self,
        input_ids=None,
        inputs_embeds=None,
        attention_mask=None,
        position_ids=None,
        pixel_values=None,
        aspect_ratio_ids=None,
        aspect_ratio_mask=None,
        cross_attention_mask=None,
        past_key_values=None,
        use_cache=False,
        cache_position=None,
        num_logits_to_keep=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        # TODO: we have no attention_mask so this won't work, check if we really won't need attention mask and find another way
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

                # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
                position_ids = position_ids.clone(memory_format=torch.contiguous_format)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and cache_position[0] == 0:
            model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
        else:
            # The clone here is for the same reason as for `position_ids`.
            model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}

        if num_logits_to_keep is not None:
            model_inputs["num_logits_to_keep"] = num_logits_to_keep

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "cross_attention_mask": cross_attention_mask,
            }
        )

        # If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
        # to compute image hidden states, otherwise they are cached within each cross attn layer
        if cache_position[0] == 0:
            model_inputs["pixel_values"] = pixel_values
            model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
            model_inputs["aspect_ratio_mask"] = aspect_ratio_mask

        return model_inputs

    def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
        cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None)
        model_kwargs = super()._update_model_kwargs_for_generation(
            outputs=outputs,
            model_kwargs=model_kwargs,
            is_encoder_decoder=is_encoder_decoder,
            **kwargs,
        )

        # add cross-attn mask for new token
        if cross_attention_mask_prev is not None:
            model_kwargs["cross_attention_mask"] = torch.cat(
                [cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1
            )
        return model_kwargs

AutoModel.register(Llama3Config, Llama3ForConditionalGeneration)
transformers.Llama3ForConditionalGeneration = Llama3ForConditionalGeneration