File size: 3,401 Bytes
a880f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
license: bigcode-openrail-m
base_model: WizardLM/WizardCoder-1B-V1.0
tags:
- axolotl
- dpo
- trl
- dpo
- generated_from_trainer
model-index:
- name: WizardCoder-1B-V1.0-dpo-beta-0.01
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: WizardLM/WizardCoder-1B-V1.0
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
hub_model_id: AlekseyKorshuk/WizardCoder-1B-V1.0-dpo-beta-0.01
hub_strategy: every_save
load_in_8bit: false
load_in_4bit: false
strict: false
rl: dpo
datasets:
- path: AlekseyKorshuk/evol-codealpaca-v1-dpo
split: train
type: wizardcoder.intel
dataset_prepared_path:
#val_set_size: 0.001
output_dir: ./output
sequence_len: 2048
#sample_packing: false # currently unsupported
pad_to_sequence_len:
lora_r:
lora_alpha:
lora_dropout:
lora_target_modules:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: ui-thesis
wandb_entity:
wandb_watch:
wandb_name: ultrachat-stable-code-3b-dpo-chatml-beta-0.01
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
max_grad_norm: 1.0
adam_epsilon: 0.00001
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 8.0e-7
warmup_steps: 32
#warmup_ratio: 0.1
weight_decay: 0.01
dpo_beta: 0.01
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
#float16: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
#evals_per_epoch: 5
#eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
#eval_table_max_new_tokens: 768 # Total number of tokens generated for predictions sent to wandb. Default is 128
#chat_template: chatml
#saves_per_epoch: 1
save_steps: 500
save_total_limit: 1
seed: 42
debug:
deepspeed:
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
```
</details><br>
# WizardCoder-1B-V1.0-dpo-beta-0.01
This model is a fine-tuned version of [WizardLM/WizardCoder-1B-V1.0](https://huggingface.co/WizardLM/WizardCoder-1B-V1.0) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 32
- training_steps: 312
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
|