File size: 2,386 Bytes
4a15929
e37c2c1
 
 
4a15929
 
 
 
 
 
 
 
 
 
 
d288799
4a15929
e37c2c1
 
4a15929
 
d288799
4a15929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d288799
4a15929
 
2c70442
 
 
4a15929
2c70442
4a15929
2c70442
 
 
 
e37c2c1
7a4f3a9
2c70442
 
 
 
e37c2c1
 
d288799
e37c2c1
d288799
e37c2c1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
  - ja
  - en
tags:
- merge
- mergekit
- lazymergekit
- Rakuten/RakutenAI-7B-chat
- lightblue/karasu-7B-chat-plus-unleashed
base_model:
- Rakuten/RakutenAI-7B-chat
- lightblue/karasu-7B-chat-plus-unleashed
---

# 🍊 Neroli-Rak-Lig-slerp-7B

Neroli-Rak-Lig-slerp-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) of [Maxime Labonne](https://huggingface.co/mlabonne) powered by [MergeKit](https://github.com/arcee-ai/mergekit) of [Arcee AI](https://www.arcee.ai):
* [Rakuten/RakutenAI-7B-chat](https://huggingface.co/Rakuten/RakutenAI-7B-chat) (base model)
* [lightblue/karasu-7B-chat-plus-unleashed](https://huggingface.co/lightblue/karasu-7B-chat-plus-unleashed)

## 💻 Configuration

```yaml
slices:
  - sources:
      - model: Rakuten/RakutenAI-7B-chat
        layer_range: [0, 32]
      - model: lightblue/karasu-7B-chat-plus-unleashed
        layer_range: [0, 32]
merge_method: slerp
base_model: Rakuten/RakutenAI-7B-chat
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 🤗 Usage for HuggingFace

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import pipeline
import torch

model_name = "AkimfromParis/Neroli-Rak-Lig-slerp-7B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id)

messages = [
    {"role": "system","content": "あなたは誠実で優秀な日本人のアシスタントです。以下のトピックに関する詳細な情報を提供してください。"},
    {"role": "user", "content": "大谷翔平選手は誰ですか?"},
    ]
print(pipe(messages, max_new_tokens=512)[0]['generated_text'][-1])
```

# 🔖 Citation
```
@misc{goddard2024arcee,
  title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
  author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
  journal={arXiv preprint arXiv:2403.13257},
  year={2024}
}
```

arxiv.org/abs/2403.13257