File size: 2,280 Bytes
808cf5d
d163a6f
 
808cf5d
 
 
 
 
 
 
 
 
 
 
fbea8b5
808cf5d
55ccbd8
82dbf68
808cf5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbea8b5
808cf5d
 
 
 
 
 
 
 
 
 
 
 
 
93a4bc2
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
language:
  - ja
tags:
- merge
- mergekit
- lazymergekit
- SakanaAI/EvoLLM-JP-A-v1-7B
- stabilityai/japanese-stablelm-base-gamma-7b
base_model:
- SakanaAI/EvoLLM-JP-A-v1-7B
- stabilityai/japanese-stablelm-base-gamma-7b
---

# Hinoki-Sak-Sta-slerp-7B

Hinoki-Sak-slerp-7B is a merge of the following models using using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) of [Maxime Labonne](https://huggingface.co/mlabonne) powered by [MergeKit](https://github.com/arcee-ai/mergekit) of [Arcee AI](https://www.arcee.ai):
* [SakanaAI/EvoLLM-JP-A-v1-7B](https://huggingface.co/SakanaAI/EvoLLM-JP-A-v1-7B) (Base model)
* [stabilityai/japanese-stablelm-base-gamma-7b](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: SakanaAI/EvoLLM-JP-A-v1-7B
        layer_range: [0, 32]
      - model: stabilityai/japanese-stablelm-base-gamma-7b
        layer_range: [0, 32]
merge_method: slerp
base_model: SakanaAI/EvoLLM-JP-A-v1-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "AkimfromParis/Hinoki-Sak-Sta-slerp-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# Citation
```
@article{goddard2024arcee,
  title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
  author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
  journal={arXiv preprint arXiv:2403.13257},
  year={2024}
}
```

arxiv.org/abs/2403.13257