File size: 6,679 Bytes
f1e1d8f
 
 
 
 
 
 
 
 
 
 
2f17ea3
f1e1d8f
 
 
 
 
2f17ea3
 
f1e1d8f
 
 
 
 
 
2f17ea3
 
 
 
 
 
f1e1d8f
 
14522b1
f1e1d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
language:
- kab
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- sw
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: Akashpb13/Kabyle_xlsr
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: kab
    metrics:
    - name: Test WER
      type: wer
      value: 0.3188425282720088
    - name: Test CER
      type: cer
      value: 0.09443079928558358
---

# Akashpb13/Kabyle_xlsr

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset.
It achieves the following results on the evaluation set (which is 10 percent of train data set merged with dev datasets):
- Loss: 0.159032
- Wer: 0.187934
## Model description
"facebook/wav2vec2-xls-r-300m" was finetuned.

## Intended uses & limitations
More information needed
## Training and evaluation data
Training data - 
Common voice Kabyle train.tsv. Only 50,000 records were sampled randomly and trained due to huge size of dataset.
Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0

## Training procedure
For creating the training dataset, all possible datasets were appended and 90-10 split was used. 

### Training hyperparameters

The following hyperparameters were used during training:

- learning_rate: 0.000096
- train_batch_size: 8
- seed: 13
- gradient_accumulation_steps: 4
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP


### Training results
| Step  | Training Loss | Validation Loss | Wer      |
|-------|---------------|-----------------|----------|
| 500   | 7.199800      | 3.130564        | 1.000000 |
| 1000  | 1.570200      | 0.718097        | 0.734682 |
| 1500  | 0.850800      | 0.524227        | 0.640532 |
| 2000  | 0.712200      | 0.468694        | 0.603454 |
| 2500  | 0.651200      | 0.413833        | 0.573025 |
| 3000  | 0.603100      | 0.403680        | 0.552847 |
| 3500  | 0.553300      | 0.372638        | 0.541719 |
| 4000  | 0.537200      | 0.353759        | 0.531191 |
| 4500  | 0.506300      | 0.359109        | 0.519601 |
| 5000  | 0.479600      | 0.343937        | 0.511336 |
| 5500  | 0.479800      | 0.338214        | 0.503948 |
| 6000  | 0.449500      | 0.332600        | 0.495221 |
| 6500  | 0.439200      | 0.323905        | 0.492635 |
| 7000  | 0.434900      | 0.310417        | 0.484555 |
| 7500  | 0.403200      | 0.311247        | 0.483262 |
| 8000  | 0.401500      | 0.295637        | 0.476566 |
| 8500  | 0.397000      | 0.301321        | 0.471672 |
| 9000  | 0.371600      | 0.295639        | 0.468440 |
| 9500  | 0.370700      | 0.294039        | 0.468902 |
| 10000 | 0.364900      | 0.291195        | 0.468440 |
| 10500 | 0.348300      | 0.284898        | 0.461098 |
| 11000 | 0.350100      | 0.281764        | 0.459805 |
| 11500 | 0.336900      | 0.291022        | 0.461606 |
| 12000 | 0.330700      | 0.280467        | 0.455234 |
| 12500 | 0.322500      | 0.271714        | 0.452694 |
| 13000 | 0.307400      | 0.289519        | 0.455465 |
| 13500 | 0.309300      | 0.281922        | 0.451217 |
| 14000 | 0.304800      | 0.271514        | 0.452186 |
| 14500 | 0.288100      | 0.286801        | 0.446830 |
| 15000 | 0.293200      | 0.276309        | 0.445399 |
| 15500 | 0.289800      | 0.287188        | 0.446230 |
| 16000 | 0.274800      | 0.286406        | 0.441243 |
| 16500 | 0.271700      | 0.284754        | 0.441520 |
| 17000 | 0.262500      | 0.275431        | 0.442167 |
| 17500 | 0.255500      | 0.276575        | 0.439858 |
| 18000 | 0.260200      | 0.269911        | 0.435425 |
| 18500 | 0.250600      | 0.270519        | 0.434686 |
| 19000 | 0.243300      | 0.267655        | 0.437826 |
| 19500 | 0.240600      | 0.277109        | 0.431731 |
| 20000 | 0.237200      | 0.266622        | 0.433994 |
| 20500 | 0.231300      | 0.273015        | 0.428868 |
| 21000 | 0.227200      | 0.263024        | 0.430161 |
| 21500 | 0.220400      | 0.272880        | 0.429607 |
| 22000 | 0.218600      | 0.272340        | 0.426883 |
| 22500 | 0.213100      | 0.277066        | 0.428407 |
| 23000 | 0.205000      | 0.278404        | 0.424020 |
| 23500 | 0.200900      | 0.270877        | 0.418987 |
| 24000 | 0.199000      | 0.289120        | 0.425821 |
| 24500 | 0.196100      | 0.275831        | 0.424066 |
| 25000 | 0.191100      | 0.282822        | 0.421850 |
| 25500 | 0.190100      | 0.275820        | 0.418248 |
| 26000 | 0.178800      | 0.279208        | 0.419125 |
| 26500 | 0.183100      | 0.271464        | 0.419218 |
| 27000 | 0.177400      | 0.280869        | 0.419680 |
| 27500 | 0.171800      | 0.279593        | 0.414924 |
| 28000 | 0.172900      | 0.276949        | 0.417648 |
| 28500 | 0.164900      | 0.283491        | 0.417786 |
| 29000 | 0.164800      | 0.283122        | 0.416078 |
| 29500 | 0.165500      | 0.281969        | 0.415801 |
| 30000 | 0.163800      | 0.283319        | 0.412753 |
| 30500 | 0.153500      | 0.285702        | 0.414046 |
| 31000 | 0.156500      | 0.285041        | 0.412615 |
| 31500 | 0.150900      | 0.284336        | 0.413723 |
| 32000 | 0.151800      | 0.285922        | 0.412292 |
| 32500 | 0.149200      | 0.289461        | 0.412153 |
| 33000 | 0.145400      | 0.291322        | 0.409567 |
| 33500 | 0.145600      | 0.294361        | 0.409614 |
| 34000 | 0.144200      | 0.290686        | 0.409059 |
| 34500 | 0.143400      | 0.289474        | 0.409844 |
| 35000 | 0.143500      | 0.290340        | 0.408367 |
| 35500 | 0.143200      | 0.289581        | 0.407351 |
| 36000 | 0.138400      | 0.292782        | 0.408736 |
| 36500 | 0.137900      | 0.289108        | 0.408044 |
| 37000 | 0.138200      | 0.292127        | 0.407166 |
| 37500 | 0.134600      | 0.291797        | 0.408413 |
| 38000 | 0.139800      | 0.290056        | 0.408090 |
| 38500 | 0.136500      | 0.291198        | 0.408090 |
| 39000 | 0.137700      | 0.289696        | 0.408044 |


### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.18.3
- Tokenizers 0.10.3

#### Evaluation Commands

1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id Akashpb13/Kabyle_xlsr --dataset mozilla-foundation/common_voice_8_0 --config kab --split test
```