File size: 6,679 Bytes
f1e1d8f 2f17ea3 f1e1d8f 2f17ea3 f1e1d8f 2f17ea3 f1e1d8f 14522b1 f1e1d8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
language:
- kab
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- sw
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: Akashpb13/Kabyle_xlsr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: kab
metrics:
- name: Test WER
type: wer
value: 0.3188425282720088
- name: Test CER
type: cer
value: 0.09443079928558358
---
# Akashpb13/Kabyle_xlsr
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset.
It achieves the following results on the evaluation set (which is 10 percent of train data set merged with dev datasets):
- Loss: 0.159032
- Wer: 0.187934
## Model description
"facebook/wav2vec2-xls-r-300m" was finetuned.
## Intended uses & limitations
More information needed
## Training and evaluation data
Training data -
Common voice Kabyle train.tsv. Only 50,000 records were sampled randomly and trained due to huge size of dataset.
Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0
## Training procedure
For creating the training dataset, all possible datasets were appended and 90-10 split was used.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000096
- train_batch_size: 8
- seed: 13
- gradient_accumulation_steps: 4
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Step | Training Loss | Validation Loss | Wer |
|-------|---------------|-----------------|----------|
| 500 | 7.199800 | 3.130564 | 1.000000 |
| 1000 | 1.570200 | 0.718097 | 0.734682 |
| 1500 | 0.850800 | 0.524227 | 0.640532 |
| 2000 | 0.712200 | 0.468694 | 0.603454 |
| 2500 | 0.651200 | 0.413833 | 0.573025 |
| 3000 | 0.603100 | 0.403680 | 0.552847 |
| 3500 | 0.553300 | 0.372638 | 0.541719 |
| 4000 | 0.537200 | 0.353759 | 0.531191 |
| 4500 | 0.506300 | 0.359109 | 0.519601 |
| 5000 | 0.479600 | 0.343937 | 0.511336 |
| 5500 | 0.479800 | 0.338214 | 0.503948 |
| 6000 | 0.449500 | 0.332600 | 0.495221 |
| 6500 | 0.439200 | 0.323905 | 0.492635 |
| 7000 | 0.434900 | 0.310417 | 0.484555 |
| 7500 | 0.403200 | 0.311247 | 0.483262 |
| 8000 | 0.401500 | 0.295637 | 0.476566 |
| 8500 | 0.397000 | 0.301321 | 0.471672 |
| 9000 | 0.371600 | 0.295639 | 0.468440 |
| 9500 | 0.370700 | 0.294039 | 0.468902 |
| 10000 | 0.364900 | 0.291195 | 0.468440 |
| 10500 | 0.348300 | 0.284898 | 0.461098 |
| 11000 | 0.350100 | 0.281764 | 0.459805 |
| 11500 | 0.336900 | 0.291022 | 0.461606 |
| 12000 | 0.330700 | 0.280467 | 0.455234 |
| 12500 | 0.322500 | 0.271714 | 0.452694 |
| 13000 | 0.307400 | 0.289519 | 0.455465 |
| 13500 | 0.309300 | 0.281922 | 0.451217 |
| 14000 | 0.304800 | 0.271514 | 0.452186 |
| 14500 | 0.288100 | 0.286801 | 0.446830 |
| 15000 | 0.293200 | 0.276309 | 0.445399 |
| 15500 | 0.289800 | 0.287188 | 0.446230 |
| 16000 | 0.274800 | 0.286406 | 0.441243 |
| 16500 | 0.271700 | 0.284754 | 0.441520 |
| 17000 | 0.262500 | 0.275431 | 0.442167 |
| 17500 | 0.255500 | 0.276575 | 0.439858 |
| 18000 | 0.260200 | 0.269911 | 0.435425 |
| 18500 | 0.250600 | 0.270519 | 0.434686 |
| 19000 | 0.243300 | 0.267655 | 0.437826 |
| 19500 | 0.240600 | 0.277109 | 0.431731 |
| 20000 | 0.237200 | 0.266622 | 0.433994 |
| 20500 | 0.231300 | 0.273015 | 0.428868 |
| 21000 | 0.227200 | 0.263024 | 0.430161 |
| 21500 | 0.220400 | 0.272880 | 0.429607 |
| 22000 | 0.218600 | 0.272340 | 0.426883 |
| 22500 | 0.213100 | 0.277066 | 0.428407 |
| 23000 | 0.205000 | 0.278404 | 0.424020 |
| 23500 | 0.200900 | 0.270877 | 0.418987 |
| 24000 | 0.199000 | 0.289120 | 0.425821 |
| 24500 | 0.196100 | 0.275831 | 0.424066 |
| 25000 | 0.191100 | 0.282822 | 0.421850 |
| 25500 | 0.190100 | 0.275820 | 0.418248 |
| 26000 | 0.178800 | 0.279208 | 0.419125 |
| 26500 | 0.183100 | 0.271464 | 0.419218 |
| 27000 | 0.177400 | 0.280869 | 0.419680 |
| 27500 | 0.171800 | 0.279593 | 0.414924 |
| 28000 | 0.172900 | 0.276949 | 0.417648 |
| 28500 | 0.164900 | 0.283491 | 0.417786 |
| 29000 | 0.164800 | 0.283122 | 0.416078 |
| 29500 | 0.165500 | 0.281969 | 0.415801 |
| 30000 | 0.163800 | 0.283319 | 0.412753 |
| 30500 | 0.153500 | 0.285702 | 0.414046 |
| 31000 | 0.156500 | 0.285041 | 0.412615 |
| 31500 | 0.150900 | 0.284336 | 0.413723 |
| 32000 | 0.151800 | 0.285922 | 0.412292 |
| 32500 | 0.149200 | 0.289461 | 0.412153 |
| 33000 | 0.145400 | 0.291322 | 0.409567 |
| 33500 | 0.145600 | 0.294361 | 0.409614 |
| 34000 | 0.144200 | 0.290686 | 0.409059 |
| 34500 | 0.143400 | 0.289474 | 0.409844 |
| 35000 | 0.143500 | 0.290340 | 0.408367 |
| 35500 | 0.143200 | 0.289581 | 0.407351 |
| 36000 | 0.138400 | 0.292782 | 0.408736 |
| 36500 | 0.137900 | 0.289108 | 0.408044 |
| 37000 | 0.138200 | 0.292127 | 0.407166 |
| 37500 | 0.134600 | 0.291797 | 0.408413 |
| 38000 | 0.139800 | 0.290056 | 0.408090 |
| 38500 | 0.136500 | 0.291198 | 0.408090 |
| 39000 | 0.137700 | 0.289696 | 0.408044 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.18.3
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id Akashpb13/Kabyle_xlsr --dataset mozilla-foundation/common_voice_8_0 --config kab --split test
```
|