Edit model card

Question generation using T5 transformer trained on SQuAD

Input format: context: "..." answer(optional): "..."

Import the pretrained model as well as tokenizer:

from transformers import T5ForConditionalGeneration, T5Tokenizer

model = T5ForConditionalGeneration.from_pretrained('AbhilashDatta/T5_qgen-squad_v2') 
tokenizer = T5Tokenizer.from_pretrained('AbhilashDatta/T5_qgen-squad_v2')

Then use the tokenizer to encode/decode and model to generate:

input = "context: My name is Abhilash Datta. answer: Abhilash"
batch = tokenizer(input, padding='longest', max_length=512, return_tensors='pt')
inputs_batch = batch['input_ids'][0]
inputs_batch = torch.unsqueeze(inputs_batch, 0)

ques_id = model.generate(inputs_batch, max_length=100, early_stopping=True)
ques_batch = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in ques_id]

print(ques_batch)

Output:

['what is my name']
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.