finetuning-1-12-2022
This model is a fine-tuned version of ASR/Finetuning on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0357
- Wer: 0.0836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.0 | 45 | 2.6669 | 1.0 |
No log | 2.0 | 90 | 1.4650 | 0.9652 |
No log | 3.0 | 135 | 0.8614 | 0.7491 |
No log | 4.0 | 180 | 0.8031 | 0.7735 |
No log | 5.0 | 225 | 0.7993 | 0.7909 |
No log | 6.0 | 270 | 0.5708 | 0.6411 |
No log | 7.0 | 315 | 0.5728 | 0.7178 |
No log | 8.0 | 360 | 0.5439 | 0.6341 |
1.2911 | 9.0 | 405 | 0.5072 | 0.7213 |
1.2911 | 10.0 | 450 | 0.3578 | 0.5331 |
1.2911 | 11.0 | 495 | 0.4871 | 0.6411 |
1.2911 | 12.0 | 540 | 0.3034 | 0.4634 |
1.2911 | 13.0 | 585 | 0.4684 | 0.6028 |
1.2911 | 14.0 | 630 | 0.2638 | 0.4216 |
1.2911 | 15.0 | 675 | 0.2657 | 0.4948 |
1.2911 | 16.0 | 720 | 0.2593 | 0.3972 |
1.2911 | 17.0 | 765 | 0.2770 | 0.4634 |
0.3079 | 18.0 | 810 | 0.2936 | 0.4530 |
0.3079 | 19.0 | 855 | 0.4168 | 0.5436 |
0.3079 | 20.0 | 900 | 0.2642 | 0.3693 |
0.3079 | 21.0 | 945 | 0.1827 | 0.3519 |
0.3079 | 22.0 | 990 | 0.1807 | 0.2962 |
0.3079 | 23.0 | 1035 | 0.2134 | 0.3484 |
0.3079 | 24.0 | 1080 | 0.1317 | 0.2474 |
0.3079 | 25.0 | 1125 | 0.0950 | 0.2021 |
0.3079 | 26.0 | 1170 | 0.0985 | 0.1707 |
0.1678 | 27.0 | 1215 | 0.1444 | 0.2753 |
0.1678 | 28.0 | 1260 | 0.0816 | 0.1289 |
0.1678 | 29.0 | 1305 | 0.1103 | 0.1916 |
0.1678 | 30.0 | 1350 | 0.0878 | 0.1777 |
0.1678 | 31.0 | 1395 | 0.1436 | 0.1568 |
0.1678 | 32.0 | 1440 | 0.1097 | 0.1882 |
0.1678 | 33.0 | 1485 | 0.0995 | 0.1777 |
0.1678 | 34.0 | 1530 | 0.0917 | 0.1882 |
0.1678 | 35.0 | 1575 | 0.0691 | 0.1254 |
0.0743 | 36.0 | 1620 | 0.0394 | 0.0941 |
0.0743 | 37.0 | 1665 | 0.0592 | 0.1185 |
0.0743 | 38.0 | 1710 | 0.0680 | 0.1220 |
0.0743 | 39.0 | 1755 | 0.0748 | 0.0941 |
0.0743 | 40.0 | 1800 | 0.0651 | 0.1010 |
0.0743 | 41.0 | 1845 | 0.0688 | 0.1045 |
0.0743 | 42.0 | 1890 | 0.0489 | 0.0871 |
0.0743 | 43.0 | 1935 | 0.0524 | 0.0976 |
0.0743 | 44.0 | 1980 | 0.0415 | 0.1080 |
0.0234 | 45.0 | 2025 | 0.0489 | 0.0767 |
0.0234 | 46.0 | 2070 | 0.0337 | 0.0732 |
0.0234 | 47.0 | 2115 | 0.0456 | 0.0662 |
0.0234 | 48.0 | 2160 | 0.0326 | 0.0871 |
0.0234 | 49.0 | 2205 | 0.0319 | 0.0976 |
0.0234 | 50.0 | 2250 | 0.0357 | 0.0836 |
Framework versions
- Transformers 4.23.0
- Pytorch 1.13.0+cpu
- Datasets 2.5.2
- Tokenizers 0.13.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.