File size: 18,089 Bytes
929819f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import numpy as np
import pandas as pd
import os
import json
import random
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.ensemble import IsolationForest
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from deap import base, creator, tools, algorithms
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoFeatureExtractor
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from textblob import TextBlob
import speech_recognition as sr
from PIL import Image
import cv2
from googletrans import Translator
import onnx
import onnxruntime
from torch.quantization import quantize_dynamic, quantize_static, prepare, convert
import torch.nn.functional as F
# Enable CUDA if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize Example Emotions Dataset
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding
encoder = OneHotEncoder(handle_unknown='ignore')
contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
# Encoding emotions
emotions_target = df['emotion'].astype('category').cat.codes
emotion_classes = df['emotion'].astype('category').cat.categories
# Neural Network for Emotional Processing
class EmotionalNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(EmotionalNN, self).__init__()
self.attention = nn.MultiheadAttention(hidden_size, num_heads=8)
self.layers = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, output_size),
nn.Softmax(dim=1)
)
def forward(self, x):
x, _ = self.attention(x, x, x)
return self.layers(x)
# Initialize and train the Emotional Neural Network
input_size = contexts_encoded.shape[1]
hidden_size = 512
output_size = len(emotion_classes)
emotional_nn = EmotionalNN(input_size, hidden_size, output_size).to(device)
# Quantization
emotional_nn_quantized = quantize_dynamic(emotional_nn, {nn.Linear}, dtype=torch.qint8)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(emotional_nn_quantized.parameters(), lr=0.001)
# Train the Emotional Neural Network
num_epochs = 5000
for epoch in range(num_epochs):
inputs = torch.FloatTensor(contexts_encoded).to(device)
targets = torch.LongTensor(emotions_target).to(device)
outputs = emotional_nn_quantized(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Export to ONNX for inference optimization
dummy_input = torch.randn(1, input_size, device=device)
torch.onnx.export(emotional_nn_quantized, dummy_input, "emotional_nn.onnx")
# ONNX Runtime inference session
ort_session = onnxruntime.InferenceSession("emotional_nn.onnx")
# Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive'},
'pleasure': {'percentage': 10, 'motivation': 'selfish'},
'sadness': {'percentage': 10, 'motivation': 'negative'},
'grief': {'percentage': 10, 'motivation': 'negative'},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong'},
'calmness': {'percentage': 10, 'motivation': 'neutral'},
'determination': {'percentage': 10, 'motivation': 'positive'},
'resentment': {'percentage': 10, 'motivation': 'negative'},
'glory': {'percentage': 10, 'motivation': 'positive'},
'motivation': {'percentage': 10, 'motivation': 'positive'},
'ideal_state': {'percentage': 100, 'motivation': 'balanced'},
'fear': {'percentage': 10, 'motivation': 'defensive'},
'surprise': {'percentage': 10, 'motivation': 'unexpected'},
'anticipation': {'percentage': 10, 'motivation': 'predictive'},
'trust': {'percentage': 10, 'motivation': 'reliable'},
'disgust': {'percentage': 10, 'motivation': 'repulsive'},
'optimism': {'percentage': 10, 'motivation': 'hopeful'},
'pessimism': {'percentage': 10, 'motivation': 'doubtful'},
'boredom': {'percentage': 10, 'motivation': 'indifferent'},
'envy': {'percentage': 10, 'motivation': 'jealous'}
}
# Adjust all emotions to a total of 200%
total_percentage = 200
default_percentage = total_percentage / len(emotions)
for emotion in emotions:
emotions[emotion]['percentage'] = default_percentage
emotion_history_file = 'emotion_history.json'
# Load and save historical data functions
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
# Function to update emotions
def update_emotion(emotion, percentage):
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
# Function to normalize context
def normalize_context(context):
return context.lower().strip()
# Function to evolve emotions using genetic algorithm
def evolve_emotions():
def evaluate(individual):
ideal_state = individual[-1]
other_emotions = individual[:-1]
return abs(ideal_state - 100), sum(other_emotions)
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attribute", lambda: random.uniform(0, 20))
toolbox.register("individual", tools.initCycle, creator.Individual, toolbox.attribute, n=(len(emotions) - 1))
toolbox.register("ideal_state", lambda: random.uniform(80, 120))
toolbox.register("complete_individual", tools.initConcat, creator.Individual, toolbox.individual, toolbox.ideal_state)
toolbox.register("population", tools.initRepeat, list, toolbox.complete_individual)
toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=10, sigma=5, indpb=0.3)
toolbox.register("select", tools.selTournament, tournsize=3)
population = toolbox.population(n=1000)
population, log = algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=50, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
for idx, emotion in enumerate(emotions.keys()):
emotions[emotion]['percentage'] = best_individual[idx]
# Sentiment analysis
sentiment_analyzer = pipeline("sentiment-analysis")
# Sentence embeddings for context-aware emotion tracking
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
# Function to get emotional response
def get_emotional_response(context):
context = normalize_context(context)
context_encoded = encoder.transform([[context]]).toarray()
# Use ONNX Runtime for inference
ort_inputs = {ort_session.get_inputs()[0].name: context_encoded.astype(np.float32)}
ort_outputs = ort_session.run(None, ort_inputs)
output = ort_outputs[0]
predicted_emotion = emotion_classes[np.argmax(output)]
# Sentiment analysis
sentiment = sentiment_analyzer(context)[0]
sentiment_score = sentiment['score'] if sentiment['label'] == 'POSITIVE' else -sentiment['score']
# Context-aware emotion tracking
context_embedding = sentence_model.encode(context)
# Combine predicted emotion, sentiment, and context
emotion_intensity = abs(sentiment_score) * np.max(output)
# Update emotions based on prediction and intensity
update_emotion(predicted_emotion, emotion_intensity * 20)
# Check for anomalies using Isolation Forest
anomaly_score = isolation_forest.decision_function([output])[0]
if anomaly_score < -0.5:
print("Anomalous context detected. Adjusting emotional response.")
update_emotion('calmness', 20)
# Record the current emotional state in history
emotion_state = {emotion: data['percentage'] for emotion, data in emotions.items()}
emotion_history.append(emotion_state)
save_historical_data(emotion_history)
# Print the current emotional state
for emotion, data in emotions.items():
print(f"{emotion.capitalize()}: {data['percentage']:.2f}% ({data['motivation']} motivation)")
return predicted_emotion, emotion_intensity
# Function to handle idle state using genetic algorithm
def handle_idle_state():
print("Entering idle state...")
evolve_emotions()
print("Emotions evolved")
for emotion, data in emotions.items():
print(f"{emotion.capitalize()}: {data['percentage']:.2f}% ({data['motivation']} motivation)")
# S.O.U.L. (Self-Organizing Universal Learning) Function
class SOUL:
def __init__(self, model_name='tiiuae/falcon-40b'):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True)
self.model.to(device)
# Quantization for optimization (INT8)
self.model = quantize_dynamic(self.model, {nn.Linear}, dtype=torch.qint8)
def generate_text(self, prompt, max_length=200):
inputs = self.tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
generate_ids = self.model.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
return self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
def bridge_ai(self, prompt):
print("\nFalcon-40B Response:")
falcon_response = self.generate_text(prompt)
print(falcon_response)
print("\nEmotional Response:")
emotion, intensity = get_emotional_response(falcon_response)
return falcon_response, emotion, intensity
# Combine Neural Network and Genetic Algorithm
def neural_genetic_convergence():
if len(emotion_history) % 10 == 0:
print("Neural-Genetic Convergence...")
evolve_emotions()
# Train the Emotional Neural Network with new data
X = np.array([list(state.values()) for state in emotion_history[-10:]])
y = np.argmax(X, axis=1)
optimizer.zero_grad()
inputs = torch.FloatTensor(X).to(device)
targets = torch.LongTensor(y).to(device)
outputs = emotional_nn_quantized(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
print("Convergence complete.")
# Emotion-based decision making
def emotion_based_decision(emotion, intensity):
if intensity > 0.8:
if emotion in ['joy', 'excitement']:
return "I'm feeling very positive! Let's do something fun!"
elif emotion in ['sadness', 'grief']:
return "I'm feeling down. I might need some time to process this."
elif emotion in ['anger', 'frustration']:
return "I'm feeling upset. It might be best to take a break and calm down."
elif intensity > 0.5:
return f"I'm feeling {emotion} at a moderate level. How about we discuss this further?"
else:
return f"I'm experiencing a mild sense of {emotion}. What are your thoughts on this?"
# Self-reflection and introspection module
def self_reflect():
dominant_emotion = max(emotions, key=lambda e: emotions[e]['percentage'])
print(f"Self-reflection: My dominant emotion is {dominant_emotion}.")
print("Analyzing my recent emotional states...")
recent_states = emotion_history[-5:]
emotion_trends = {}
for state in recent_states:
for emotion, percentage in state.items():
if emotion not in emotion_trends:
emotion_trends[emotion] = []
emotion_trends[emotion].append(percentage)
for emotion, trend in emotion_trends.items():
if len(trend) > 1:
if trend[-1] > trend[0]:
print(f"{emotion} has been increasing.")
elif trend[-1] < trend[0]:
print(f"{emotion} has been decreasing.")
print("Based on this reflection, I should adjust my responses accordingly.")
# Adaptive personality traits
personality_traits = {
'openness': 0.5,
'conscientiousness': 0.5,
'extraversion': 0.5,
'agreeableness': 0.5,
'neuroticism': 0.5
}
def adapt_personality():
for trait in personality_traits:
change = random.uniform(-0.1, 0.1)
personality_traits[trait] = max(0, min(1, personality_traits[trait] + change))
print("Personality traits adapted:", personality_traits)
# Empathy simulation module
def simulate_empathy(user_input):
user_emotion = TextBlob(user_input).sentiment.polarity
if user_emotion > 0.5:
print("I sense that you're feeling positive. That's wonderful!")
elif user_emotion < -0.5:
print("I can tell you might be feeling down. Is there anything I can do to help?")
else:
print("I'm here to listen and support you, whatever you're feeling.")
# Dream-like state for offline learning
def dream_state():
print("Entering dream-like state for offline learning...")
dream_contexts = [
"flying through clouds",
"solving complex puzzles",
"exploring ancient ruins",
"conversing with historical figures",
"inventing new technologies"
]
for context in dream_contexts:
get_emotional_response(context)
print("Dream-like state completed. New insights gained.")
# Emotional intelligence scoring
def calculate_eq_score():
eq_score = sum(emotions[e]['percentage'] for e in ['empathy', 'self_awareness', 'social_skills']) / 3
print(f"Current Emotional Intelligence Score: {eq_score:.2f}")
return eq_score
# Multi-modal input processing
def process_multimodal_input():
text_input = input("You (text): ")
# Speech recognition
r = sr.Recognizer()
with sr.Microphone() as source:
print("Speak now...")
audio = r.listen(source)
try:
voice_input = r.recognize_google(audio)
print(f"Voice input: {voice_input}")
except sr.UnknownValueError:
voice_input = None
print("Voice input not recognized")
# Image processing
image_path = input("Enter path to image (or press enter to skip): ")
if image_path:
image = cv2.imread(image_path)
if image is not None:
# Perform basic image analysis (e.g., dominant color)
average_color = np.mean(image, axis=(0, 1))
image_input = f"Image with dominant color: RGB({average_color[2]:.0f}, {average_color[1]:.0f}, {average_color[0]:.0f})"
print(image_input)
else:
image_input = None
print("Failed to process image")
else:
image_input = None
combined_input = f"{text_input} {voice_input or ''} {image_input or ''}"
return combined_input.strip()
# Multi-language support
translator = Translator()
def translate_input(text, target_language='en'):
translated = translator.translate(text, dest=target_language)
return translated.text
# Main interaction loop
soul = SOUL()
print("Welcome to the advanced SOUL AI. Type 'exit' to end the conversation.")
conversation_turn = 0
while True:
user_input = process_multimodal_input()
if user_input.lower() == 'exit':
print("Thank you for the conversation. Goodbye!")
break
conversation_turn += 1
# Multi-language processing
translated_input = translate_input(user_input)
response, emotion, intensity = soul.bridge_ai(translated_input)
decision = emotion_based_decision(emotion, intensity)
print("AI Decision:", decision)
simulate_empathy(user_input)
neural_genetic_convergence()
if conversation_turn % 10 == 0:
adapt_personality()
calculate_eq_score()
if conversation_turn % 20 == 0:
self_reflect()
dream_state()
# Simulate idle state every 5 interactions
if conversation_turn % 5 == 0:
handle_idle_state()
# End of script
if __name__ == "__main__":
# Initialize isolation forest
historical_data = np.array([emotional_nn_quantized(torch.FloatTensor(contexts_encoded).to(device)).detach().cpu().numpy()])
isolation_forest = IsolationForest(contamination=0.1, random_state=42)
isolation_forest.fit(historical_data)
# Run the main interaction loop
try:
# Main interaction loop is already defined above
pass
except Exception as e:
print(f"An error occurred: {e}")
finally:
print("SOUL AI is shutting down. Final self-reflection:")
self_reflect()
print("Thank you for using SOUL AI. Goodbye!")
|