Safetensors
File size: 9,000 Bytes
405bce1
 
 
0700252
 
 
 
0c459fe
0cdd293
d841716
8f23f2d
 
d841716
 
 
 
 
0700252
 
 
e8d59fd
0700252
 
1c29548
0700252
1c29548
0700252
1c29548
0700252
1c29548
0700252
 
 
1c29548
 
02f7bf9
 
 
 
 
 
 
 
 
 
 
0700252
 
 
8f23f2d
0700252
40933d1
0700252
 
 
8f23f2d
ff8cb47
 
 
 
 
8f23f2d
 
 
 
 
 
 
b4c27f7
 
 
 
 
 
 
 
 
0700252
 
acdc403
0700252
 
070912c
 
 
 
 
 
3e2b3c7
 
9da2e57
 
 
 
 
070912c
 
 
 
e109ff2
 
9da2e57
e109ff2
 
 
 
3e2b3c7
9da2e57
070912c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2b3c7
070912c
9da2e57
070912c
 
 
9da2e57
070912c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2b3c7
e109ff2
3e2b3c7
070912c
 
 
9da2e57
 
 
 
 
3e2b3c7
070912c
 
3e2b3c7
 
070912c
 
 
0700252
 
8f23f2d
0700252
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
license: apache-2.0
---
# OmniFusion

**OmniFusion** is an advanced multimodal AI model designed to extend the capabilities of traditional language processing systems by integrating additional data modalities such as images, and potentially audio, 3D and video content.

[[source code](https://github.com/AIRI-Institute/OmniFusion/tree/main/OmniFusion/train_src)] [[project page](https://airi-institute.github.io/OmniFusion/)] [[ArXiv](https://arxiv.org/abs/2404.06212)]

### ChangeLog

[10/04/2024] OmniFusion-1.1 [weights](https://huggingface.co/AIRI-Institute/OmniFusion/tree/main/OmniMistral-v1_1) uploaded. The new model can speak Russian

[01/04/2024] Model training [source code](https://github.com/AIRI-Institute/OmniFusion/tree/main/OmniFusion/train_src) for OmniFusion-1.1 released

[22/11/2023] OmniFusion weights are available on [Huggingface](https://huggingface.co/AIRI-Institute/OmniFusion)

### Architecture

<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/architecture2.png" width="100%">
</p>

The open source OmniFusion core is Mistral-7B. There are two versions of the model: the first uses one visual encoder CLIP-ViT-L, the second uses two encoders (CLIP-ViT-L and Dino V2). Initially focusing on images, we chose CLIP-ViT-L as a visual encoder due to for its efficient information transfer capabilities.

The most important component of OmniFusion is its adapter, a mechanism that allows the language model to interpret and incorporate information from different modalities. For the single encoder version, the adapter is a single-layer four-headed transformer layer that has shown superior performance compared to simpler linear layers or MLP structures. The model with two encoders uses an adapter that collects features from all layers of visual encoders, this adapter does not have an attention layer.

The adapter takes embeddings from the visual encoder (excluding the CLS token) and maps them to textual embeddings that are compatible with the language model.

To further enhance the multimodal capabilities of the model, we use learnable custom tokens to mark the beginning and end of visual data in a text sequence.

### Training Process consists of two stages

1. Pre-training the adapter on Image Captioning tasks (LAION, CC-4M, etc.).
2. Once the adapter has learned to map visual embeddings to the language model's textual space, we proceed to unfreeze Mistral for improved understanding of dialog formats and complex queries.
3. The dataset consists of data in English and Russian and has the following structure:

| Task          | Dataset Source                     | #Samples   |
| --------------| ---------------------------------- |  --------- |
| Caption       | ShareGPT4V                         | 100K       |
| VQA           | COCO, SAM-9K                       | 20K, 9K    |
| WebQA         | WebData                            | 1.5K       |
| OCRQA         | TextVQA, OCRVQA                    | 120K       |
| Conversation  | LLaVA-v1.5-665K, OCRVQA            | 665K       |
| DocVQA        | Proprietary data (ru)              | 20K        |
| Text-only SFT | Proprietary data (ru), Alpaca (en) | 10K        |

### Results

OmniFusion-1.1 was benchmarked against the latest multimodal SOTA models. It excelled in generative metrics and classification benchmarks like Text-VQA.
<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/radar_plot_gigachat.png" width="70%">
</p>


**OmniFusion-1.1** (Mistral version) results (April, 2024 update):
| Model                                  | textvqa| scienceqa  | pope      | gqa      | ok_vqa  |
| -------------------------------------- | ------ | ---------- | --------- | -------- | ------- |
| OmniFusion-1.1 (one encoder, Mistral)  | **0.4893** | **0.6802**     | 0.7818    | 0.4600   | 0.5187  |
| OmniFusion-1.1 (two encoders, Mistral) | 0.4755 | 0.6732     | **0.8153**    | **0.4761**   | **0.5317**  |

OmniFusion-1 (previous Mistral version) Performance on Visual Dialog Benchmark

| Model        | NDCG | MRR  | Recall@1 | Recall@5 | Recall@10 |
| ------------ | ---- | ---- | -------- | -------- | --------- |
| OmniFusion   | 25.91| 10.78| 4.74     | 13.80    | 20.53     |
| LLaVA-13B    | 24.74| 8.91 | 2.98     | 10.80    | 18.02     |

### Examples (OmniFusion-1.1)
<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/ex1.png" width="100%">
</p>
<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/ex2.png" width="100%">
</p>

### Examples (OmniFusion-1.0)

<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/examples.png" width="100%">
</p>

### How to Use

```python
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
from urllib.request import urlopen
import torch.nn as nn
from huggingface_hub import hf_hub_download

# Loading some sources of the projection adapter and image encoder
hf_hub_download(repo_id="AIRI-Institute/OmniFusion", filename="models.py", local_dir='./')
from models import CLIPVisionTower

DEVICE = "cuda:0"
PROMPT = "This is a dialog with AI assistant.\n"

tokenizer = AutoTokenizer.from_pretrained("AIRI-Institute/OmniFusion", subfolder="OmniMistral-v1_1/tokenizer", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("AIRI-Institute/OmniFusion", subfolder="OmniMistral-v1_1/tuned-model", torch_dtype=torch.bfloat16, device_map=DEVICE)

hf_hub_download(repo_id="AIRI-Institute/OmniFusion", filename="OmniMistral-v1_1/projection.pt", local_dir='./')
hf_hub_download(repo_id="AIRI-Institute/OmniFusion", filename="OmniMistral-v1_1/special_embeddings.pt", local_dir='./')
projection = torch.load("OmniMistral-v1_1/projection.pt", map_location=DEVICE)
special_embs = torch.load("OmniMistral-v1_1/special_embeddings.pt", map_location=DEVICE)

clip = CLIPVisionTower("openai/clip-vit-large-patch14-336")
clip.load_model()
clip = clip.to(device=DEVICE, dtype=torch.bfloat16)

def gen_answer(model, tokenizer, clip, projection, query, special_embs, image=None):
    bad_words_ids = tokenizer(["\n", "</s>", ":"], add_special_tokens=False).input_ids + [[13]]
    gen_params = {
        "do_sample": False,
        "max_new_tokens": 50,
        "early_stopping": True,
        "num_beams": 3,
        "repetition_penalty": 1.0,
        "remove_invalid_values": True,
        "eos_token_id": 2,
        "pad_token_id": 2,
        "forced_eos_token_id": 2,
        "use_cache": True,
        "no_repeat_ngram_size": 4,
        "bad_words_ids": bad_words_ids,
        "num_return_sequences": 1,
    }
    with torch.no_grad():
        image_features = clip.image_processor(image, return_tensors='pt')
        image_embedding = clip(image_features['pixel_values']).to(device=DEVICE, dtype=torch.bfloat16)

        projected_vision_embeddings = projection(image_embedding).to(device=DEVICE, dtype=torch.bfloat16)
        prompt_ids = tokenizer.encode(f"{PROMPT}", add_special_tokens=False, return_tensors="pt").to(device=DEVICE)
        question_ids = tokenizer.encode(query, add_special_tokens=False, return_tensors="pt").to(device=DEVICE)

        prompt_embeddings = model.model.embed_tokens(prompt_ids).to(torch.bfloat16)
        question_embeddings = model.model.embed_tokens(question_ids).to(torch.bfloat16)

        embeddings = torch.cat(
            [
                prompt_embeddings,
                special_embs['SOI'][None, None, ...],
                projected_vision_embeddings,
                special_embs['EOI'][None, None, ...],
                special_embs['USER'][None, None, ...],
                question_embeddings,
                special_embs['BOT'][None, None, ...]
            ],
            dim=1,
        ).to(dtype=torch.bfloat16, device=DEVICE)
        out = model.generate(inputs_embeds=embeddings, **gen_params)
    out = out[:, 1:]
    generated_texts = tokenizer.batch_decode(out)[0]
    return generated_texts

img_url = "https://i.pinimg.com/originals/32/c7/81/32c78115cb47fd4825e6907a83b7afff.jpg"
question = "What is the sky color on this image?"
img = Image.open(urlopen(img_url))

answer = gen_answer(
    model,
    tokenizer,
    clip,
    projection,
    query=question,
    special_embs=special_embs,
    image=img
)

img.show()
print(question)
print(answer)
```

### Future Plans

Work is underway on a version that uses ImageBind encoders and accepts more modalities (sound, 3D, video). Stay tuned for updates on GitHub!

### Authors

The FusionBrain scientific group from the AIRI Institute, in collaboration with scientists from Sber AI, led the model's development.

Main contributors:
+ Anton Razzhigaev: [Blog](https://t.me/abstractDL)
+ Elizaveta Goncharova
+ Matvey Mihkalchuk
+ Maxim Kurkin
+ Irina Abdullaeva
+ Denis Dimitrov [Blog](https://t.me/dendi_math_ai)
+ Andrey Kuznetsov [Blog](https://t.me/complete_ai)