File size: 9,000 Bytes
405bce1 0700252 0c459fe 0cdd293 d841716 8f23f2d d841716 0700252 e8d59fd 0700252 1c29548 0700252 1c29548 0700252 1c29548 0700252 1c29548 0700252 1c29548 02f7bf9 0700252 8f23f2d 0700252 40933d1 0700252 8f23f2d ff8cb47 8f23f2d b4c27f7 0700252 acdc403 0700252 070912c 3e2b3c7 9da2e57 070912c e109ff2 9da2e57 e109ff2 3e2b3c7 9da2e57 070912c 3e2b3c7 070912c 9da2e57 070912c 9da2e57 070912c 3e2b3c7 e109ff2 3e2b3c7 070912c 9da2e57 3e2b3c7 070912c 3e2b3c7 070912c 0700252 8f23f2d 0700252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
license: apache-2.0
---
# OmniFusion
**OmniFusion** is an advanced multimodal AI model designed to extend the capabilities of traditional language processing systems by integrating additional data modalities such as images, and potentially audio, 3D and video content.
[[source code](https://github.com/AIRI-Institute/OmniFusion/tree/main/OmniFusion/train_src)] [[project page](https://airi-institute.github.io/OmniFusion/)] [[ArXiv](https://arxiv.org/abs/2404.06212)]
### ChangeLog
[10/04/2024] OmniFusion-1.1 [weights](https://huggingface.co/AIRI-Institute/OmniFusion/tree/main/OmniMistral-v1_1) uploaded. The new model can speak Russian
[01/04/2024] Model training [source code](https://github.com/AIRI-Institute/OmniFusion/tree/main/OmniFusion/train_src) for OmniFusion-1.1 released
[22/11/2023] OmniFusion weights are available on [Huggingface](https://huggingface.co/AIRI-Institute/OmniFusion)
### Architecture
<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/architecture2.png" width="100%">
</p>
The open source OmniFusion core is Mistral-7B. There are two versions of the model: the first uses one visual encoder CLIP-ViT-L, the second uses two encoders (CLIP-ViT-L and Dino V2). Initially focusing on images, we chose CLIP-ViT-L as a visual encoder due to for its efficient information transfer capabilities.
The most important component of OmniFusion is its adapter, a mechanism that allows the language model to interpret and incorporate information from different modalities. For the single encoder version, the adapter is a single-layer four-headed transformer layer that has shown superior performance compared to simpler linear layers or MLP structures. The model with two encoders uses an adapter that collects features from all layers of visual encoders, this adapter does not have an attention layer.
The adapter takes embeddings from the visual encoder (excluding the CLS token) and maps them to textual embeddings that are compatible with the language model.
To further enhance the multimodal capabilities of the model, we use learnable custom tokens to mark the beginning and end of visual data in a text sequence.
### Training Process consists of two stages
1. Pre-training the adapter on Image Captioning tasks (LAION, CC-4M, etc.).
2. Once the adapter has learned to map visual embeddings to the language model's textual space, we proceed to unfreeze Mistral for improved understanding of dialog formats and complex queries.
3. The dataset consists of data in English and Russian and has the following structure:
| Task | Dataset Source | #Samples |
| --------------| ---------------------------------- | --------- |
| Caption | ShareGPT4V | 100K |
| VQA | COCO, SAM-9K | 20K, 9K |
| WebQA | WebData | 1.5K |
| OCRQA | TextVQA, OCRVQA | 120K |
| Conversation | LLaVA-v1.5-665K, OCRVQA | 665K |
| DocVQA | Proprietary data (ru) | 20K |
| Text-only SFT | Proprietary data (ru), Alpaca (en) | 10K |
### Results
OmniFusion-1.1 was benchmarked against the latest multimodal SOTA models. It excelled in generative metrics and classification benchmarks like Text-VQA.
<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/radar_plot_gigachat.png" width="70%">
</p>
**OmniFusion-1.1** (Mistral version) results (April, 2024 update):
| Model | textvqa| scienceqa | pope | gqa | ok_vqa |
| -------------------------------------- | ------ | ---------- | --------- | -------- | ------- |
| OmniFusion-1.1 (one encoder, Mistral) | **0.4893** | **0.6802** | 0.7818 | 0.4600 | 0.5187 |
| OmniFusion-1.1 (two encoders, Mistral) | 0.4755 | 0.6732 | **0.8153** | **0.4761** | **0.5317** |
OmniFusion-1 (previous Mistral version) Performance on Visual Dialog Benchmark
| Model | NDCG | MRR | Recall@1 | Recall@5 | Recall@10 |
| ------------ | ---- | ---- | -------- | -------- | --------- |
| OmniFusion | 25.91| 10.78| 4.74 | 13.80 | 20.53 |
| LLaVA-13B | 24.74| 8.91 | 2.98 | 10.80 | 18.02 |
### Examples (OmniFusion-1.1)
<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/ex1.png" width="100%">
</p>
<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/ex2.png" width="100%">
</p>
### Examples (OmniFusion-1.0)
<p align="left">
<img src="https://raw.githubusercontent.com/AIRI-Institute/OmniFusion/main/content/examples.png" width="100%">
</p>
### How to Use
```python
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
from urllib.request import urlopen
import torch.nn as nn
from huggingface_hub import hf_hub_download
# Loading some sources of the projection adapter and image encoder
hf_hub_download(repo_id="AIRI-Institute/OmniFusion", filename="models.py", local_dir='./')
from models import CLIPVisionTower
DEVICE = "cuda:0"
PROMPT = "This is a dialog with AI assistant.\n"
tokenizer = AutoTokenizer.from_pretrained("AIRI-Institute/OmniFusion", subfolder="OmniMistral-v1_1/tokenizer", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("AIRI-Institute/OmniFusion", subfolder="OmniMistral-v1_1/tuned-model", torch_dtype=torch.bfloat16, device_map=DEVICE)
hf_hub_download(repo_id="AIRI-Institute/OmniFusion", filename="OmniMistral-v1_1/projection.pt", local_dir='./')
hf_hub_download(repo_id="AIRI-Institute/OmniFusion", filename="OmniMistral-v1_1/special_embeddings.pt", local_dir='./')
projection = torch.load("OmniMistral-v1_1/projection.pt", map_location=DEVICE)
special_embs = torch.load("OmniMistral-v1_1/special_embeddings.pt", map_location=DEVICE)
clip = CLIPVisionTower("openai/clip-vit-large-patch14-336")
clip.load_model()
clip = clip.to(device=DEVICE, dtype=torch.bfloat16)
def gen_answer(model, tokenizer, clip, projection, query, special_embs, image=None):
bad_words_ids = tokenizer(["\n", "</s>", ":"], add_special_tokens=False).input_ids + [[13]]
gen_params = {
"do_sample": False,
"max_new_tokens": 50,
"early_stopping": True,
"num_beams": 3,
"repetition_penalty": 1.0,
"remove_invalid_values": True,
"eos_token_id": 2,
"pad_token_id": 2,
"forced_eos_token_id": 2,
"use_cache": True,
"no_repeat_ngram_size": 4,
"bad_words_ids": bad_words_ids,
"num_return_sequences": 1,
}
with torch.no_grad():
image_features = clip.image_processor(image, return_tensors='pt')
image_embedding = clip(image_features['pixel_values']).to(device=DEVICE, dtype=torch.bfloat16)
projected_vision_embeddings = projection(image_embedding).to(device=DEVICE, dtype=torch.bfloat16)
prompt_ids = tokenizer.encode(f"{PROMPT}", add_special_tokens=False, return_tensors="pt").to(device=DEVICE)
question_ids = tokenizer.encode(query, add_special_tokens=False, return_tensors="pt").to(device=DEVICE)
prompt_embeddings = model.model.embed_tokens(prompt_ids).to(torch.bfloat16)
question_embeddings = model.model.embed_tokens(question_ids).to(torch.bfloat16)
embeddings = torch.cat(
[
prompt_embeddings,
special_embs['SOI'][None, None, ...],
projected_vision_embeddings,
special_embs['EOI'][None, None, ...],
special_embs['USER'][None, None, ...],
question_embeddings,
special_embs['BOT'][None, None, ...]
],
dim=1,
).to(dtype=torch.bfloat16, device=DEVICE)
out = model.generate(inputs_embeds=embeddings, **gen_params)
out = out[:, 1:]
generated_texts = tokenizer.batch_decode(out)[0]
return generated_texts
img_url = "https://i.pinimg.com/originals/32/c7/81/32c78115cb47fd4825e6907a83b7afff.jpg"
question = "What is the sky color on this image?"
img = Image.open(urlopen(img_url))
answer = gen_answer(
model,
tokenizer,
clip,
projection,
query=question,
special_embs=special_embs,
image=img
)
img.show()
print(question)
print(answer)
```
### Future Plans
Work is underway on a version that uses ImageBind encoders and accepts more modalities (sound, 3D, video). Stay tuned for updates on GitHub!
### Authors
The FusionBrain scientific group from the AIRI Institute, in collaboration with scientists from Sber AI, led the model's development.
Main contributors:
+ Anton Razzhigaev: [Blog](https://t.me/abstractDL)
+ Elizaveta Goncharova
+ Matvey Mihkalchuk
+ Maxim Kurkin
+ Irina Abdullaeva
+ Denis Dimitrov [Blog](https://t.me/dendi_math_ai)
+ Andrey Kuznetsov [Blog](https://t.me/complete_ai) |