metadata
license: llama3.2
datasets:
- HuggingFaceH4/ultrafeedback_binarized
base_model:
- AIR-hl/Llama-3.2-1B-ultrachat200k
pipeline_tag: text-generation
tags:
- trl
- llama
- dpo
- alignment
- transformers
- custome
- chat
Llama-3.2-1B-DPO
Model Details
- Model type: aligned model
- License: llama3.2
- Finetuned from model: AIR-hl/Llama-3.2-1B-ultrachat200k
- Training data: HuggingFaceH4/ultrafeedback_binarized
- Training framework: trl
Training Details
Training Hyperparameters
attn_implementation
: flash_attention_2 beta
: 0.05 bf16
: True learning_rate
: 1e-5 lr_scheduler_type
: cosine per_device_train_batch_size
: 4 gradient_accumulation_steps
: 8 torch_dtype
: bfloat16 num_train_epochs
: 1 max_prompt_length
: 512 max_length
: 1024 warmup_ratio
: 0.05
Results
init_train_loss
: 0.6929 final_train_loss
: 0.5713 accuracy
: 0.7188 reward_margin
: 0.5971
Training script
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
import multiprocessing
from trl import (
DPOConfig,
DPOTrainer,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig))
script_args, training_args, model_config = parser.parse_args_and_config()
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
attn_implementation=model_config.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
peft_config = get_peft_config(model_config)
if peft_config is None:
ref_model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
else:
ref_model = None
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
if script_args.ignore_bias_buffers:
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
]
dataset = load_dataset(script_args.dataset_name,
split=script_args.dataset_train_split)
dataset=dataset.select_columns(['chosen', 'prompt', 'rejected'])
trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
processing_class=tokenizer,
peft_config=peft_config,
)
trainer.train()
trainer.save_model(training_args.output_dir)