metadata
license: apache-2.0
tags:
- finetuned
pipeline_tag: text-generation
model-index:
- name: deepseek-coder-6.7b-chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 36.01
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 53.74
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 38.22
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.94
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.54
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 16.98
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
name: Open LLM Leaderboard
deepseek-coder-6.7B-chat
It was created by starting with the deepseek-coder-6.7B and training it on the open assistant dataset. We have attached the wandb report in pdf form to view the training run at a glance.
Reson
This model was fine tned to allow it to follow direction and is a steeping stone to further training, but still would be good for asking qestions about code.
How to use
You will need the transformers>=4.31
from transformers import AutoTokenizer
import transformers
import torch
model = "AIGym/deepseek-coder-6.7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
prompt = "What are the values in open source projects?"
formatted_prompt = (
f"### Human: {prompt}### Assistant:"
)
sequences = pipeline(
formatted_prompt,
do_sample=True,
top_k=50,
top_p = 0.7,
num_return_sequences=1,
repetition_penalty=1.1,
max_new_tokens=500,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
Referrals
Run Pod - This is who I use to train th emodels on huggingface. If you use it we both get free crdits. - Visit Runpod's Website!
Paypal - If you want to leave a tip, it is appecaheted. - Visit My Paypal!
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 40.90 |
AI2 Reasoning Challenge (25-Shot) | 36.01 |
HellaSwag (10-Shot) | 53.74 |
MMLU (5-Shot) | 38.22 |
TruthfulQA (0-shot) | 42.94 |
Winogrande (5-shot) | 57.54 |
GSM8k (5-shot) | 16.98 |