File size: 4,978 Bytes
00f7902
 
 
 
eb263ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00f7902
 
04c97c4
 
aac5bce
04c97c4
 
aac5bce
4faf529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac5bce
04c97c4
b8d3481
 
eb263ce
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
license: apache-2.0
tags:
- finetuned
pipeline_tag: text-generation
model-index:
- name: deepseek-coder-6.7b-chat
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 36.01
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 53.74
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.22
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 42.94
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 57.54
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 16.98
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat
      name: Open LLM Leaderboard
---

# deepseek-coder-6.7B-chat
It was created by starting with the deepseek-coder-6.7B and training it on the open assistant dataset. We have attached the wandb report in pdf form to view the training run at a glance.

# Reson
This model was fine tned to allow it to follow direction and is a steeping stone to further training, but still would be good for asking qestions about code.

# How to use
You will need the transformers>=4.31
```python
from transformers import AutoTokenizer
import transformers 
import torch
model = "AIGym/deepseek-coder-6.7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

prompt = "What are the values in open source projects?"
formatted_prompt = (
    f"### Human: {prompt}### Assistant:"
)


sequences = pipeline(
    formatted_prompt,
    do_sample=True,
    top_k=50,
    top_p = 0.7,
    num_return_sequences=1,
    repetition_penalty=1.1,
    max_new_tokens=500,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")
```

# Referrals
Run Pod - This is who I use to train th emodels on huggingface. If you use it we both get free crdits. - <a href="https://runpod.io?ref=kilq83n1" target="_blank" style="color: #3498db; text-decoration: none; font-weight: bold;">Visit Runpod's Website!</a>

Paypal - If you want to leave a tip, it is appecaheted. - <a href="https://paypal.me/OpenSourceTraining" target="_blank" style="color: #3498db; text-decoration: none; font-weight: bold;">Visit My Paypal!</a>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_AIGym__deepseek-coder-6.7b-chat)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |40.90|
|AI2 Reasoning Challenge (25-Shot)|36.01|
|HellaSwag (10-Shot)              |53.74|
|MMLU (5-Shot)                    |38.22|
|TruthfulQA (0-shot)              |42.94|
|Winogrande (5-shot)              |57.54|
|GSM8k (5-shot)                   |16.98|