Loading and Inferencing model on Multiple GPUs
When loading and inferencing with the model getting the following error.
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!
Below is an example of running AIDC-AI/Ovis1.6-Gemma2-9B
on two GPUs:
import torch
from PIL import Image
from transformers import AutoModelForCausalLM
device_map = {
"visual_tokenizer": 0,
"vte": 0,
"llm.model.embed_tokens": 0,
"llm.model.norm": 0,
"llm.lm_head": 0,
"llm.model.layers.0": 0,
"llm.model.layers.1": 0,
"llm.model.layers.2": 0,
"llm.model.layers.3": 0,
"llm.model.layers.4": 0,
"llm.model.layers.5": 0,
"llm.model.layers.6": 0,
"llm.model.layers.7": 0,
"llm.model.layers.8": 0,
"llm.model.layers.9": 0,
"llm.model.layers.10": 0,
"llm.model.layers.11": 0,
"llm.model.layers.12": 0,
"llm.model.layers.13": 0,
"llm.model.layers.14": 0,
"llm.model.layers.15": 0,
"llm.model.layers.16": 0,
"llm.model.layers.17": 0,
"llm.model.layers.18": 0,
"llm.model.layers.19": 0,
"llm.model.layers.20": 1,
"llm.model.layers.21": 1,
"llm.model.layers.22": 1,
"llm.model.layers.23": 1,
"llm.model.layers.24": 1,
"llm.model.layers.25": 1,
"llm.model.layers.26": 1,
"llm.model.layers.27": 1,
"llm.model.layers.28": 1,
"llm.model.layers.29": 1,
"llm.model.layers.30": 1,
"llm.model.layers.31": 1,
"llm.model.layers.32": 1,
"llm.model.layers.33": 1,
"llm.model.layers.34": 1,
"llm.model.layers.35": 1,
"llm.model.layers.36": 1,
"llm.model.layers.37": 1,
"llm.model.layers.38": 1,
"llm.model.layers.39": 1,
"llm.model.layers.40": 1,
"llm.model.layers.41": 1
}
# load model
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis1.6-Gemma2-9B",
torch_dtype=torch.bfloat16,
multimodal_max_length=8192,
device_map=device_map,
trust_remote_code=True)
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
# enter image path and prompt
image_path = input("Enter image path: ")
image = Image.open(image_path)
text = input("Enter prompt: ")
query = f'<image>\n{text}'
# format conversation
prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image])
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
# generate output
with torch.inference_mode():
gen_kwargs = dict(
max_new_tokens=1024,
do_sample=False,
top_p=None,
top_k=None,
temperature=None,
repetition_penalty=None,
eos_token_id=model.generation_config.eos_token_id,
pad_token_id=text_tokenizer.pad_token_id,
use_cache=True
)
output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
print(f'Output:\n{output}')
Im getting this error now.
RuntimeError: indices should be either on cpu or on the same device as the indexed tensor (cuda:0)
Im getting this error now.
RuntimeError: indices should be either on cpu or on the same device as the indexed tensor (cuda:0)
I executed the above code locally, and it runs fine. You might want to check if there is an issue with your Python environment.
Thanks. Reran it in a new env and it worked
This discussion was very helpful!
One insight, the bug above is determined by the transformers
version.
As of 12/04/2024, the latest version of transformers
shows the same error as above.RuntimeError: indices should be either on cpu or on the same device as the indexed tensor (cuda:0)
The 4.44.2 version is safe.
Thanks!!