File size: 1,952 Bytes
7682df3
a4240d9
7682df3
 
 
e07cd67
 
7682df3
e07cd67
7682df3
 
 
e07cd67
 
 
 
7682df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07cd67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: AI-MO/NuminaMath-72B-CoT
tags:
- alignment-handbook
- generated_from_trainer
- math
- aimo
datasets:
- AI-MO/NuminaMath-TIR
model-index:
- name: qwen2-72b-sft-aimo_v03.00
  results: []
license: other
license_name: tongyi-qianwen
language:
- en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/huggingface/h4/runs/bxdbewkc)
# qwen2-72b-sft-aimo_v03.00

This model is a fine-tuned version of [AI-MO/qwen2-72b-sft](https://huggingface.co/AI-MO/qwen2-72b-sft) on the AI-MO/numina-dataset-tora-v1.0-release-candidate-1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4792

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3939        | 1.0   | 797  | 0.3793          |
| 0.2618        | 2.0   | 1594 | 0.3876          |
| 0.1141        | 3.0   | 2391 | 0.4310          |
| 0.0363        | 4.0   | 3188 | 0.4792          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1