File size: 1,952 Bytes
7682df3 a4240d9 7682df3 e07cd67 7682df3 e07cd67 7682df3 e07cd67 7682df3 e07cd67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: AI-MO/NuminaMath-72B-CoT
tags:
- alignment-handbook
- generated_from_trainer
- math
- aimo
datasets:
- AI-MO/NuminaMath-TIR
model-index:
- name: qwen2-72b-sft-aimo_v03.00
results: []
license: other
license_name: tongyi-qianwen
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/huggingface/h4/runs/bxdbewkc)
# qwen2-72b-sft-aimo_v03.00
This model is a fine-tuned version of [AI-MO/qwen2-72b-sft](https://huggingface.co/AI-MO/qwen2-72b-sft) on the AI-MO/numina-dataset-tora-v1.0-release-candidate-1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4792
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3939 | 1.0 | 797 | 0.3793 |
| 0.2618 | 2.0 | 1594 | 0.3876 |
| 0.1141 | 3.0 | 2391 | 0.4310 |
| 0.0363 | 4.0 | 3188 | 0.4792 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1 |