Model description

This model is a fine-tuned version of macbert for the purpose of spell checking in medical application scenarios. We fine-tuned macbert Chinese base version on a 300M dataset including 60K+ authorized medical articles. We proposed to randomly confuse 30% sentences of these articles by adding noise with a either visually or phonologically resembled characters. Consequently, the fine-tuned model can achieve 96% accuracy on our test dataset.

Intended uses & limitations

You can use this model directly with a pipeline for token classification:

>>> from transformers import (AutoModelForTokenClassification, AutoTokenizer)
>>> from transformers import pipeline

>>> hub_model_id = "9pinus/macbert-base-chinese-medical-collation"

>>> model = AutoModelForTokenClassification.from_pretrained(hub_model_id)
>>> tokenizer = AutoTokenizer.from_pretrained(hub_model_id)
>>> classifier = pipeline('ner', model=model, tokenizer=tokenizer)
>>> result = classifier("ε¦‚ζžœη—…ζƒ…θΎƒι‡οΌŒε―ι€‚ε½“ε£ζœη”²θ‚–ε”‘η‰‡γ€ηŽ―ι…―ηΊ’ιœ‰η΄ η‰‡η­‰θ―η‰©θΏ›θ‘ŒζŠ—ζ„ŸζŸ“ι•‡η—›γ€‚")

>>> for item in result:
>>>     if item['entity'] == 1:
>>>         print(item)

{'entity': 1, 'score': 0.58127016, 'index': 14, 'word': 'θ‚–', 'start': 13, 'end': 14}

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.1+cu113
  • Datasets 1.17.0
  • Tokenizers 0.10.3
Downloads last month
34
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.