Uploaded model

  • Developed by: 84basi
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Readme

事前準備

  • token にご自身の token を指定して下さい
  • L4 GPU を選択して下さい
  • 事前に elyza-tasks-100-TV_0.jsonl を Google Colab にアップロードして下さい
  • 正しく実行が完了すると /content/llm-jp-3-13b-it-7.0_output.jsonl が出力されます
token = "" # token
model_id = "llm-jp-3-13b-it-7.0" # llm-jp-3-13b-it-4.17, gemma-2-27b-it-4.19
model_name = "84basi/" + model_id
answer_json_file = "./elyza-tasks-100-TV_0.jsonl"
output_json_file = "./" + model_id + "_output.jsonl"

!pip install unsloth -q
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" -q

from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json

max_seq_length = 2048
dtype = None
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = model_name,
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    token = token,
    trust_remote_code=True,
)

# 推論モードに切り替え
FastLanguageModel.for_inference(model)

# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
datasets = []
with open(answer_json_file, "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

# 推論
from tqdm import tqdm

results = []
for dt in tqdm(datasets):
  input = dt["input"]
  prompt = f"""### 指示\n{input}\n### 回答\n"""
  inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
  outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

with open(output_json_file, 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for 84basi/llm-jp-3-13b-it-7.0

Finetuned
(1121)
this model

Dataset used to train 84basi/llm-jp-3-13b-it-7.0