bart_samsum_finetuned_for_asr
This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4623
- Rouge1: 54.4349
- Rouge2: 29.4619
- Rougel: 44.7701
- Rougelsum: 50.2825
- Gen Len: 30.2751
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.3855 | 0.9997 | 1841 | 1.5274 | 52.3133 | 27.7547 | 43.0233 | 48.3891 | 30.3004 |
1.0882 | 2.0 | 3683 | 1.4969 | 53.2457 | 28.4129 | 44.1196 | 49.1579 | 30.2637 |
0.8376 | 2.9997 | 5524 | 1.5882 | 52.6929 | 27.5974 | 43.3339 | 47.9779 | 30.8034 |
0.6756 | 4.0 | 7366 | 1.6617 | 52.5167 | 27.1278 | 43.037 | 48.1382 | 30.5299 |
0.5417 | 4.9986 | 9205 | 1.8083 | 52.0696 | 26.8054 | 42.6108 | 47.5455 | 30.2894 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 66
Model tree for 404sau404/bart_samsum_finetuned_for_asr
Base model
facebook/bart-large-xsum