File size: 1,905 Bytes
b5cbb63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import os
import json
import argparse
import torch
import random
import glog
from lm_eval import evaluator
from eval_utils import LMEvalAdaptor
from .tokenization_bitnet import BitnetTokenizer
from .modeling_bitnet import BitnetForCausalLM
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--hf_path', default='1bitLLM/bitnet_b1_58-3B', type=str)
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument("--tasks", type=str)
parser.add_argument("--output_path", default=None, type=str)
parser.add_argument('--num_fewshot', type=int, default=0)
parser.add_argument('--ctx_size', default=2048, type=int)
def main(args):
model_str = args.hf_path
model = BitnetForCausalLM.from_pretrained(
args.hf_path,
device_map='auto',
low_cpu_mem_usage=True,
use_flash_attention_2=True,
torch_dtype=torch.float16,
).half()
tokenizer = BitnetTokenizer.from_pretrained(args.hf_path, use_fast=False)
glog.info('loaded model!')
task_names = args.tasks.split(",")
lm_eval_model = LMEvalAdaptor(model_str, model, tokenizer, args.batch_size, args.ctx_size)
results = evaluator.simple_evaluate(
model=lm_eval_model,
tasks=task_names,
batch_size=args.batch_size,
no_cache=True,
num_fewshot=args.num_fewshot,
)
print(evaluator.make_table(results))
if args.output_path is not None:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
# otherwise cannot save
results["config"]["model"] = args.hf_path
with open(args.output_path, "w") as f:
json.dump(results, f, indent=2)
if __name__ == '__main__':
torch.set_grad_enabled(False)
args = parser.parse_args()
random.seed(args.seed)
torch.random.manual_seed(args.seed)
main(args)
|