File size: 3,850 Bytes
0bceed2 40ff1e6 0bceed2 94ed291 0bceed2 94ed291 0bda952 4144fcf 0bceed2 94ed291 0bceed2 94ed291 0bda952 94ed291 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
base_model: 1aurent/vit_base_patch16_224.owkin_pancancer
tags:
- image-classification
- timm
- owkin
- biology
- cancer
library_name: timm
datasets:
- 1aurent/Kather-texture-2016
metrics:
- accuracy
pipeline_tag: image-classification
model-index:
- name: owkin_pancancer_ft_kather2016
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: 1aurent/Kather-texture-2016
type: image-classification
metrics:
- type: accuracy
value: 0.984
name: accuracy
verified: false
widget:
- src: >-
https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg
example_title: adipose
license: other
license_name: owkin-non-commercial
license_link: https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt
---
# Model card for vit_base_patch16_224.owkin_pancancer_ft_kather2016
A Vision Transformer (ViT) image classification model. \
Trained by Owkin on 40M pan-cancer histology tiles from TCGA. \
Fine-tuned on Kather Texture 2016 dataset.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 85.8
- Image size: 224 x 224 x 3
- **Papers:**
- Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling: https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2
- **Pretrain Dataset:** TGCA: https://portal.gdc.cancer.gov/
- **Dataset:** Kather Texture 2016: https://huggingface.co/datasets/1aurent/Kather-texture-2016
- **Original:** https://github.com/owkin/HistoSSLscaling/
- **License:** https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
# get example histology image
img = Image.open(
urlopen(
"https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg"
)
)
# load model from the hub
model = timm.create_model(
model_name="hf-hub:1aurent/vit_base_patch16_224.owkin_pancancer_ft_kather2016",
pretrained=True,
).eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
# get example histology image
img = Image.open(
urlopen(
"https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg"
)
)
# load model from the hub
model = timm.create_model(
model_name="hf-hub:1aurent/vit_base_patch16_224.owkin_pancancer_ft_kather2016",
pretrained=True,
num_classes=0,
).eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
```
## Citation
```bibtex
@article {Filiot2023.07.21.23292757,
author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti},
title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling},
elocation-id = {2023.07.21.23292757},
year = {2023},
doi = {10.1101/2023.07.21.23292757},
publisher = {Cold Spring Harbor Laboratory Press},
URL = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757},
eprint = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757.full.pdf},
journal = {medRxiv}
}
``` |