File size: 3,243 Bytes
aade77e 4832b64 aade77e 0ad92fb aade77e 4832b64 aade77e 0a5391e aade77e adfc217 aade77e 0ad92fb aade77e 0ad92fb aade77e 0ad92fb aade77e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: apache-2.0
language:
- vi
- en
---
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Tuan Pham (FPTU HCM Student)
- **Model type:** Llama2-7B Decoder-only
- **Finetuned from model :**
* meta-llama/Llama-2-7b
* bkai-foundation-models/vietnamese-llama2-7b-120GB
* yeen214/llama2_7b_merge_orcafamily.
- **Bilingual support :** English and Vietnamese
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:**
* Training: https://github.com/vTuanpham/Vietnamese_QA_System
* Data: https://github.com/vTuanpham/Large_dataset_translator
- **Paper:** ...
- **Demo:** ...
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Prompt template
```
[SYSTEM_PROMPT]
####### Instruction:
[INPUT]
%%%%%%% Response:
[RESPONSE]
```
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from torch.cuda.amp import autocast
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, pipeline
model_name = "1TuanPham/T-Llama-v1.1"
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
use_cache=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
pipe = pipeline("text-generation", model=base_model, tokenizer=tokenizer, streamer=streamer)
with autocast():
output_default = pipe("Phạm Nhật Vượng là ", pad_token_id=50256, max_new_tokens=128)
```
## Training Details
**Hardware Type:**
* GPU: VGA NVIDIA Tesla P100 16GB
* SYSTEM RAM: 29GB
**Hours used:** ~42.5 Approx*
### Training Data
* BactrianX
* OpenOrca_translated
* WizardLM_70k_translated
* TigerLabMathInstruct_translated_vi
* GradeSchoolMathInstruct_translated
* vilm_lima-vi
* MTEngVietnamese
* databricks_dolly15k_translated
* AlpacaCleaned_translated
* databricks_dolly15k
* OpenOrca
* GradeSchoolMathInstruct
* AlpacaCleaned
* WebglmQA
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
* Learning rate: 2e-5 cosine
* Optimizer: PagedLion8bit
* QLora: rank: 64 /Q: 4-bit
- 250k examples of 70% Vietnamese 30% English for 3.37 epoch
- 350k examples of 60% Vietnamese 40% English for 1.1 epoch
### Training loss
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63905e87df447b438817b2cd/3e7Ep0KQ6qNAMqnL6bmyE.png)
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Results
[More Information Needed]
## Technical Specifications
### Model Architecture and Objective
[More Information Needed]
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
## Model Card Authors
## Model Card Contact
[More Information Needed] |