15boehler commited on
Commit
f07e975
1 Parent(s): e0d50ac
Files changed (3) hide show
  1. README.md +197 -61
  2. adapter_config.json +23 -0
  3. adapter_model.bin +3 -0
README.md CHANGED
@@ -1,83 +1,219 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: text-generation
4
- tags:
5
- - finetuned
6
- inference:
7
- parameters:
8
- temperature: 0.7
9
  ---
10
 
11
- # Model Card for Mistral-7B-Instruct-v0.1
12
 
13
- The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets.
14
 
15
- For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
16
 
17
- ## Instruction format
18
 
19
- In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
20
 
21
- E.g.
22
- ```
23
- text = "<s>[INST] What is your favourite condiment? [/INST]"
24
- "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
25
- "[INST] Do you have mayonnaise recipes? [/INST]"
26
- ```
27
 
28
- This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
29
 
30
- ```python
31
- from transformers import AutoModelForCausalLM, AutoTokenizer
32
 
33
- device = "cuda" # the device to load the model onto
34
 
35
- model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
36
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
 
 
 
 
37
 
38
- messages = [
39
- {"role": "user", "content": "What is your favourite condiment?"},
40
- {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
41
- {"role": "user", "content": "Do you have mayonnaise recipes?"}
42
- ]
43
 
44
- encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
45
 
46
- model_inputs = encodeds.to(device)
47
- model.to(device)
 
48
 
49
- generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
50
- decoded = tokenizer.batch_decode(generated_ids)
51
- print(decoded[0])
52
- ```
53
 
54
- ## Model Architecture
55
- This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
56
- - Grouped-Query Attention
57
- - Sliding-Window Attention
58
- - Byte-fallback BPE tokenizer
59
 
60
- ## Troubleshooting
61
- - If you see the following error:
62
- ```
63
- Traceback (most recent call last):
64
- File "", line 1, in
65
- File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
66
- config, kwargs = AutoConfig.from_pretrained(
67
- File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
68
- config_class = CONFIG_MAPPING[config_dict["model_type"]]
69
- File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
70
- raise KeyError(key)
71
- KeyError: 'mistral'
72
- ```
73
 
74
- Installing transformers from source should solve the issue
75
- pip install git+https://github.com/huggingface/transformers
76
 
77
- This should not be required after transformers-v4.33.4.
78
 
79
- ## Limitations
80
 
81
- The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
82
- It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
83
- make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.1
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
 
 
 
 
 
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
 
27
+ ### Model Sources [optional]
 
 
 
 
28
 
29
+ <!-- Provide the basic links for the model. -->
30
 
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
 
35
+ ## Uses
 
 
 
36
 
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
38
 
39
+ ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
42
 
43
+ [More Information Needed]
44
 
45
+ ### Downstream Use [optional]
46
 
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "q_proj",
20
+ "v_proj"
21
+ ],
22
+ "task_type": "CAUSAL_LM"
23
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43e7ccd7484142d1466fc02acb69e1ad587b2783b00ba59ef442dcdfeb3e52af
3
+ size 27308941